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ABSTRACT

Existing works study the Class Incremental learning
(CIL) problem with the assumption that the data for previous
classes are absent, or only a small subset of samples (known
as exemplars) are accessible. Differently, we propose a new
and practical setting called retrospective CIL, where all the
previous data are accessible, but with bounded training bud-
gets for old data replay. Since only a small subset of old sam-
ples can be replayed, it brings a new research problem, i.e.,
dynamically sampling old data along the incremental train-
ing process. As incremental learning particularly suffers from
catastrophic forgetting, we propose to use the forgettability
of the old samples as the sampling priorities to favour the
forgotten samples during the dynamic sampling process. To
achieve this, we introduce a forgetting rate metric with graph-
based propagation to estimate the sample forgettability. The
proposed method brings improvements on two benchmark
datasets.

Index Terms— continual learning, lifelong learning,
catastrophic forgetting

1. INTRODUCTION

Incremental learning (IL) or lifelong learning aims at adapt-
ing a model continually given an increasing number of tasks
or data. The learning scheme is deemed more practical and
realistic than the conventional learning notion that assumes
one-off training on a full dataset. In particular, class incre-
mental learning (CIL) is a typical IL task in which the clas-
sifier is trained to recognize an increasing number of object
classes, e.g., from C0 old classes to C0 + C1 + · · · + CT

classes, where (C1 + · · ·+CT ) classes are presented sequen-
tially to the classifier.

The main challenge of IL is catastrophic forgetting [1, 2],
a phenomenon in which the learner forgets the previously
learned knowledge during the learning of new tasks.To ad-
dress catastrophic forgetting, many studies follow two main
approaches: 1) identify and preserve essential parameters
from the old model [3, 4, 5, 6], or 2) transfer the knowledge
from the old model to the new model through knowledge dis-
tillation [7, 8, 9].

Fig. 1. CIL with Fixed Memory vs. Retrospective CIL.

A simple yet effective way to further prevent catastrophic
forgetting is to replay the old data, a small fraction of which
has been reserved as a memory. The samples maintained as
the memory can be randomly selected [10, 11] or the partic-
ularly sampled to reconstruct the mean feature of each class
(herding) [12]. A general assumption of these exemplar-based
schemes is that the accessibility to old data is limited due to
the major concern over limited storage for old data. However,
such an assumption could be too restrictive in many real sce-
narios, because some do have sufficient storage for the entire
training database.

In this work, we explore a new but practical setting un-
der the IL framework, named retrospective class incremental
learning (retrospective CIL), which assumes full accessibil-
ity to old data but with restricted training budget to replay the
old samples. In this case, the exemplars can be dynamically
selected on-the-fly along the training process. This setting
can be found in many real-world applications. For instance, a
system with access to the full database but 1) computational
resource is limited at the local node, and 2) quick model it-
eration is required. We illustrate the difference between con-
ventional CIL with fixed memory and the new retrospective
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setting in Fig. 1.
To study the effects of different exemplars, we perform

experiments using fixed and dynamic exemplars. Moreover,
inspired by the importance sampling [13, 14, 15, 16] and ac-
tive learning [17, 18] which aim to identify the most informa-
tive data samples for training, we propose to select old sam-
ples based on their chances of being forgotten during the in-
cremental training process [19]. In particular, we introduce a
forgetting rate (FR) metric to record the sample forgettability
and use it as the sampling priority among old data during the
incremental training phases. To this end, a graph-based FR
propagation method is introduced to estimate the FR of each
old sample.

The contributions of this paper are threefold. 1) We are
the first to propose a new and practical setting called ret-
rospective CIL, where all previous data are accessible dur-
ing training while the number of old samples is restricted for
each training epoch; 2) under the new setting, we formulate
the problem and perform a systematic study on existing CIL
methods with dynamic sampling; 3) we further propose the
idea of using the forgettability of old samples to guide the dy-
namic sampling, the FR metric and an online graph-based FR
propagation method.

2. RETROSPECTIVE CLASS INCREMENTAL
LEARNING

We formally define the problem of retrospective CIL in this
section and provide some preliminary studies of the proposed
setting in comparison with the traditional exemplar-based CIL
setting.

2.1. Problem Formulation

Formally, we denote a sequence of training phases as phase
0 to phase T, where phase 0 is the base model training and
phases 1 to T are the incremental learning phases. At each
incremental phase t, the system stores two sets of data: Dt =
{Xt,Yt} for Ct new classes that arrive in the incremental
phase t and D0:t−1 = {X0:t−1,Y0:t−1} forC0:t−1 old classes
that are already trained in previously phases, where X and Y
denote the images and their labels, respectively. During IL,
the new model is trained for S epochs in total to obtain a uni-
fied classifier for C0:t classes. For simplicity and clarity, we
denote the superscript 0 : t− 1 as old in the rest of the paper.
As shown in Fig. 2, at each training epoch s, all new images
xi ∈ Xt (i = 1, ...|Xt|) are passed to the network for training,
whereas only a limited number of old images are selected to
preserve the old knowledge. We set this limit for each old
class with a retrospective fraction φ such that the number of
old samples per class bc = φ× |Xold

c |.
We consider the traditional exemplar-based setting as a

special case of retrospective CIL, where the exemplars are re-
peatedly replayed during the training (i.e. Xold

1 = Xold
s =

Xold
s+1 for s = 1, 2, ...S − 1). In contrast, our new setting

allows dynamic sampling approaches to replay different sub-
sets of old data along the incremental learning process (i.e.,
Xold

s 6= Xold
s+1).

2.2. CIL Networks

In a typical CIL framework, during every training epoch, all
new images and a small subset of old images are fed into
the network to train a unified classifier for both new and old
classes (as illustrated in Fig. 2). The cross-entropy loss (LCE)
for image classification is computed for all new samples in Xt

and selected old samples Xold
s .

Cosine Normalized Fully Connected Layer. To reduce the
significant bias towards new data, the cosine normalized fully
connected layer (fc) is proposed by LUCIR [8] as follows to
compute the prediction of class i:

pi(x) =
exp(η〈θ̄i, f̄(x)〉)∑
j exp(η〈θ̄j , f̄(x)〉)

, (1)

where f is the feature network, f̄(x) is the l2 normalized fea-
ture, 〈〉 on l2 normalized features denotes the consine simi-
larity, and η is a learnable softmax temperature to adjust the
peak of the probability distribution.
Less Forget Constraint. To encourage the network to retain
its ability to represent old classes, the new model is expected
to produce the same outputs as those of the original model.
This is usually achieved by model distillation. Specifically,
as shown in Fig. 2, at every forward pass, the samples are
passed into a frozen copy of the old model to obtain a refer-
ence output. A distillation loss is computed to measure the
difference between the reference output and the new model
output. The distillation loss can be computed as the KL diver-
gence between the reference and the predicted class probabil-
ities (LwF [7], iCarl [20]), or as the cosine distance between
the two features (LUCIR [8]).
Margin Ranking Loss. LUCIR also introduces a margin
ranking loss on top H hard negative classes for the old sam-
ples:

LMR = −
H∑

h=1

max(m− pgt + ph, 0), (2)

where m is the margin of the ranking loss, pgt = 〈θ̄gt, f̄(x)〉
computes the predicted probability of the ground truth class
and ph = 〈θ̄h, f̄(x)〉 is the probability for topH hard negative
classes.

2.3. Preliminary Results on Retrospective CIL

We conduct preliminary studies under retrospective CIL prob-
lem on the existing methods iCaRL and LUCIR by setting the
retrospective fraction φ to 2%, 4%, 8% (i.e bc = 10, 20, 40)
as shown in Fig. 3. The upper bound result is obtained by
training all old data (φ = 100%) with the classification loss.
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Fig. 2. Overview of Retrospective CIL with Forgettable Sample Mining. We use the network architecture of LUCIR [8] to
illustrate the pipeline. The red dashed box illustrates the Forgettable Sample Mining component. At every incremental phase t,
in order to prioritize the forgotten samples of old classes, we calculate the forgetting rate (∆FR) from the confidence drop δ
for each old sample involved in the current training epoch s. The ∆FR for the small subset of old data is then propagated to the
entire old dataset through a similarity-based graph. With the propagated FR, the old data for the next epoch s+ 1 are sampled
from the entire old dataset according to their forgetting rates.

Fig. 3. Retrospective CIL Results Under Different φ. We
plot the mean accuracy (iMean) over different levels of bud-
gets using different IL methods. The results are obtained on
CIFAR100 dataset [21] with 5 incremental phases. Note that
the x-axis is not in a linear scale.

Given full access to the old dataset, we randomly replay old
samples every epoch and compare this to the fixed replay of
old exemplars selected by herding [12]. Overall, retrospecting
with random samples greatly improves the results compared
to retrospecting with only fixed exemplars. With random sam-
ples, LUCIR performs better when the retrospective fraction
is low (e.g., φ = 2%). The performance of LUCIR is not
much better than that of iCaRL when φ reaches 4%; LUCIR
is superseded by the latter at φ = 8%.

Despite its simplicity, dynamic random sampling provides

a strong baseline for the proposed retrospective CIL setting.
Based on that, we propose a more effective budget allocation
method by introducing a more aggressive sampling method
for CIL problem with old sample forgettability.

3. FORGETTABLE SAMPLE MINING

In this section, we introduce a dynamic sampling method for
retrospective CIL problem to actively select old samples that
are highly forgettable as the retrospective samples.
Forgetting Rates of Old Samples. To measure the forgetta-
bility of old samples in a CIL system, we define the forgetting
rate of each old sample xjs by the amount of confidence drop
δ in their class predictions:

∆FR = mapping(2δpgt , [−1, 1]),where δ = p∗gt−pgt. (3)

For simplicity, we omit the subscription js as it is performed
for all the sampled old data and in every epoch. In Equation 3,
we extract the predicted confidence of the ground truth class
for an old sample that is trained in the current epoch, and
compute the difference δ between its prediction from the old
model (p∗gt) and the current model (pgt). We map δ to the
forgetting rate by multiplying it with a scaling factor of 2 and
clipping the value to [0, 1], which is further normalized to [-
1, 1] to obtain a zero-centered rate. With this mapping, if the
confidence drops by more than 0.5 (δ ≥ 0), we consider it as
100% forgotten, i.e ∆FR = 1; if δ ≤ 0, ∆FR equals to −1
showing that this sample is very well remembered.
Forgetting Rate Propagation. Given a low retrospective
fraction, only a very small fraction of old data will be fed
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for training at every epoch. Thus, we can only obtain ∆FR
for a small number of old samples that is insufficient to guide
the subsequent sampling. Therefore, we propose to use graph
propagation to update FR for those untrained samples; the for-
gotten samples that yield high ∆FR will propagate their FR
updates to bring up the sampling priority of their respective
neighbourhoods.

In particular, we first construct a sparse affinity matrix
Ac ∈ [0, 1]n

c×nc

by cosine similarity for any j, j′ in old class
c:

acjj′ :=


〈v̄j , v̄j′〉, if j 6= j′ ∧KNN(vj , v

′
j)

1, if j = j′

0, otherwise,
(4)

where v denotes the feature extracted from the previous
model. KNN(vj , v

′
j) is true if vj ∈ NNk(vj′)) ∨ (vj′ ∈

NNk(vj))). The affinity matrix Ac is computed within each
old class c, and nc is its total number of samples. To main-
tain the sparsity, we use KNN to filter the trivial connections.
Note that the graph is only constructed once for each class
along the entire training lifetime. Particularly, at the end of
every training phase t, we construct At for Xt. Then at the
next phase t + 1, we use the previously constructed A0:t for
propagation. In other words, the graph is also constructed in
an incremental way, i.e. at each phase, we only construct the
graphs for new classes and we do not change the graphs for
old classes.

The FR updates from each training epoch are propagated
to the neighbourhood via the graph as follows:

∆FRc
prop = A′c ·∆FRc, (5)

where ∆FRc is a column vector with shape of bc for the
trained data samples of class c. The FR is propagated through
the graph by multiplying A′c (a partial matrix of Ac) with
shape of nc × bc since only a subset of nodes in the graph are
updated during a training epoch. For each old sample j, we
further normalize its ∆FRc

prop by the number of its neigh-
bours that are trained in the current epoch, denoted as W c

j =∑
js
1(acj,js > 0). The normalized ∆FR

c
= ∆FRc

prop/W
c.

Sampling by Forgetting Rate. After obtaining the FR for the
entire dataset, we can perform dynamic sampling based on the
computed FR as described in Algorithm 1. This procedure
presents the learning pipeline for each incremental phase t.

Since those samples with high FR for the current epoch
may not be immediately selected in the next epoch, we apply
an exponential moving average to keep a momentum on the
previous FR as

FRs = α∆FRs + (1− α)FRs−1, (6)

where the FR update from the current epoch s is weighted by
α, and the previous averaged FRs−1 is weighted by 1− α.

The computed FRs is used as the metric for sampling
priority. We use the multinomial sampling with the sampling

Algorithm 1 Graph-based Forgettable Sample Mining
procedure TRAINING(Dt, Dold, A0:t−1, bc)

Initialize FR ∈ [0]nold

Randomly select Xold,c
1 = {xold,c

j1
} ∼ Xold,c, j1 = 1, 2, ..bc for each

class c
for epoch s = 1, 2 ...S do

TRAINSET={Xold
s ,Yold

s } ∪ {X
t,Yt}

Train (TRAINSET)⇒∆FRs(pgt, p∗gt) for all xold
js
∈Xold

s

∆FRs = Propagate FR(∆FRs, A
0:t−1)

if s==1 then
FRs = ∆FRs

else
FRs = Compute Moving Average(∆FRs, FRs−1)

end
Xold

s+1= Sampling(FRs)
end

At= Construct Graph(Xt)
end procedure

weight − log(1− (FRs + 1)/2). We observe that the overall
forgetting rates differ for different classes.

4. EXPERIMENTS

4.1. Experiment Setting

Dataset. We evaluate the proposed approach on CI-
FAR100 [21] and ImageNet ILSVRC 2012 [22]. We follow
the setting in [8] to pre-train half of the classes in each dataset.
We split the old and new classes in the same way as [8] by us-
ing the same random seed. At each incremental phase, we
increase the number of classes by 10 (5 incremental phases)
and 25 (2 incremental phases) for CIFAR100. For ImageNet,
we use the same subset of 100 classes as used in [8] (Ima-
geNet100) and also train the model by 5 and 2 incremental
phases.
Implementation. We use two existing methods, iCaRL [20]
and LUCIR [8], as the base models and adopt different ret-
rospection methods on them. We adopt ResNet 32 for CI-
FAR100 and ResNet 18 for ImageNet100 and follow the
training settings used in [8]. We set the initial learning rate as
0.1 for both datasets. For CIFAR100, the learning rate is de-
cayed by a factor of 10 after 80 and 120 epochs, respectively.
In total, we train 160 epochs at every incremental phase. For
ImageNet100, the learning rate also starts from 0.1 and is di-
vided by 10 every 30 epochs with a total of 90 epochs in every
phase. Regarding the hyperparameters, in the margin ranking
loss, H is set to 2 and the loss margin m is set to 0.5 for all
the experiments. We set K = 20 and α = 0.7 for FR propa-
gation.
Evaluation Setup. We test different retrospective sampling
approaches with φ = 2%, 4%, 8% (i.e, sampling budget bc =
10, 20, 40 for CIFAR100). For ImageNet100, since the num-
ber of old samples varies around 1000 for different classes,
we set a uniform sampling budget per class by bc = 10, 20.
Since the proposed online sampling method enables dynamic
resource allocation across different classes, the data sampled
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Table 1. Results (iMean %) on CIFAR100.
5-phase 2-phase

bc(φ) 10(2%) 20(4%) 40(8%) 10(2%) 20(4%) 40(8%)
iCaRL+exemplar 52.44 57.62 61.19 61.27 63.70 64.74
iCaRL+random 61.64 63.96 67.32 62.53 65.34 67.76
iCaRL+FR 59.37 64.03 67.16 62.59 65.29 67.82
iCaRL(CNN)+random 61.64 66.73 70.17 60.55 65.70 69.39
iCaRL(CNN)+FR 61.79 67.04 70.09 60.75 65.77 69.72
LUCIR+exemplar 60.68 63.01 64.98 65.16 66.49 67.58
LUCIR+random 65.86 67.20 69.66 67.57 68.38 70.37
LUCIR+FR 66.00 67.47 69.77 67.71 68.64 70.51

Table 2. Results (iMean %) of 5-
phase setting with different K on Ima-
geNet100.

5-phase iMean

bc = 10

LUCIR+random 73.46
No Prop 74.03
K=20 74.32
K=50 74.44

bc = 20

LUCIR+random 75.37
No Prop 75.94
K=20 76.16
K=50 76.15

Table 3. Results (iMean %) on ImageNet100.
5-phase 2-phase

bc 10 20 10 20
LUCIR+random 73.46 75.37 75.68 76.74
LUCIR+FR 74.32 76.16 76.07 77.17

for different old classes may vary from each other. To avoid
zero-sampling for some classes, we impose a minimum num-
ber of bc/2 per class during the dynamic sampling process.
For all the experiments, we report the average results of 5
runs.
Evaluation Metric. We report the evaluation result for each
method using the average incremental accuracy by calculating
the mean accuracy of all incremental training phases (iMean).
Visual Inspection. We present the visual inspection of sam-
ple forgettability in supplementary materials.

4.2. Evaluation of Dynamic Sampling Methods

We evaluate different variants of retrospective sampling on
CIFAR100 on 5-phase and 2-phase setups, and the results are
summarized in Table 1.

We show the mean accuracy in Table 1 with fixed ex-
emplars under different budgets as the reference for the tra-
ditional CIL setting with limited memory. Then, under our
retrospective CIL setting, we perform dynamic random sam-
pling (“+random”) and graph-based forgettable sample min-
ing (“+FR”). For iCaRL, we report the results using the orig-
inal mean exemplar classifier (“iCaRL”) and CNN classifier
(“iCaRL CNN”). In general, LUCIR performs much better
with lower budgets (bc = 10, 20). The random dynamic sam-
pling under the new setting largely improves the accuracy
when comparing to the traditional exemplar-based setting, es-
pecially when the budget is low. The forgettable sample min-
ing with FR brings a slight improvement in most cases with
iCaRL and all cases with LUCIR.

We further compare the performance of forgettable sam-
ple mining against random sampling on ImageNet100 using
LUCIR. The accuracy for all incremental phases is plotted in
Fig. 4. The proposed FR-based sampling improves the accu-
racy at all incremental phases. Moreover, the standard devia-
tion is reduced with FR-based sampling comparing to that of

Fig. 4. Accuracy at Every Incremental Phase for Iman-
geNet100.

the random sampling. The mean accuracy is shown in Table 3.
It is observed that our proposed approach with FR sampling
achieves greater improvement varying from 0.39 to 0.86 on
ImageNet100. Our proposed method may be more effective
when sampling from a larger database for old classes as there
are over 1000 samples per class in ImageNet100 whereas only
500 samples per class in CIFAR100.

4.3. Ablation Study

In this section, we evaluate different components of the pro-
posed method by choosing different K for KNN graph, mea-
suring FR with different metrics (Table 2), and setting various
budgets bc (see supplementary material).

K for Graph Propagation. We conduct experiment on Im-
ageNet100 with 5 incremental phases by choosing K=0 (no
graph propagation), K=20, and K=50. The results are shown
in Table 2. Without graph propagation, the computed FR still
brings improvement over random sampling. In this case, since
the FR for each individual sample is only updated when it-
self is trained, the FR is accurate at that training epoch but
will become obsolete gradually until the next updates. When
we increase K, each sample will propagate its FR update to
the nearest neighbours to achieve a coherent FR distribution
among the neighbourhood. The results of K=20 and K=50 are
similar as we use weighted graph edges to reduce the propa-
gation effect from distant neighbours.
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5. CONCLUSION

In this work, we propose a new and practical setting of IL with
full accessibility to the old data called retrospective CIL. Un-
der the proposed setting, we study different approaches to dy-
namically select old samples. To further improve the perfor-
mance, we introduce a graph-based online mining method to
estimate the forgetting rates of old samples and adaptively al-
locate the training resources accordingly during the CIL pro-
cess.
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