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User-friendly Interactive Image Segmentation
through Unified Combinatorial User Inputs

Wenxian Yang, Jianfei Cai, Jianmin Zheng, and Jiebo Luo

Abstract—One weakness in the existing interactive image
segmentation algorithms is the lack of more intelligent ways
to understand the intention of user inputs. In this paper, we
advocate the use of multiple intuitive user inputs to better
reflect a user’s intention. In particular, we propose a constrained
random walks algorithm that facilitates the use of three types of
user inputs: (1) foreground and background seed input, (2) soft
constraint input, and (3) hard constraint input, as well as their
combinations. The foreground and background seed input allows
a user to draw strokes to specify foreground and background
seeds. The soft constraint input allows a user to draw strokes
to indicate the region that the boundary should pass through.
The hard constraint input allows a user to specify the pixels that
the boundary must align with. Our proposed method supports
all three types of user inputs in one coherent computational
framework consisting of a constrained random walks and a local
editing algorithm, which allows more precise contour refinement.
Experimental results on two benchmark data sets show that
the proposed framework is highly effective and can quickly and
accurately segment a wide variety of natural images with ease.

Index Terms—Interactive image segmentation, digital image
editing, multiple user inputs, random walks algorithm.

I. I NTRODUCTION

Interactive image segmentation involves minimal user in-
teraction to incorporate user intention into the segmentation
process and is an active research area in recent years because it
can achieve satisfactory segmentation results that are unattain-
able by the state-of-the-art automatic image segmentation
algorithms. This paper considers the same problem of how
to interactively segment a foreground object out from its
surrounding background. Our goal is to develop intuitive and
intelligent image segmentation algorithms and tools that allow
users to interactively guide the segmentation algorithm via
a small amount of intuitive interactions until a satisfactory
segmentation result that reflects both user intentions and
photometric features is achieved.

For a good interactive image segmentation algorithm, there
are two basic requirements: (1) given a certain user input, the
algorithm should produce intuitive segmentation that reflects
the user intent; (2) the algorithm must be efficient so that it
can provide instant visual feedback.
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A. Related Work

In general, interactive image segmentation can be classified
into two categories: hard segmentation and soft segmentation.
Hard segmentation algorithms such as [1], [2] produce a
binary map, i.e., a pixel belongs to either foreground or
background, while soft segmentation algorithms such as [3],
[4] extract a fractional (fuzzy) matte for an image. In this
research, we only consider the hard segmentation problem. In
the following, we give a brief review on the related interactive
image segmentation algorithms and tools.

Early interactive image segmentation algorithms utilize
either regional properties such as Adobe’s magic wand or
boundary properties such as active contour [5] and intelligent
scissors [6], [7]. The magic wand tool starts with a small
user-specified region. The region grows through connecting
neighboring pixels that fall within some adjustable tolerance
range of the color statistics of the specified region. With the
active contour method, the user is typically asked to place a
contour near the desired boundary and the algorithm evolves
the boundary to snap to the object contour. The main problem
with the active contour method is that the contour is likely
to be trapped in a local minimum. The intelligent scissors
algorithm requires the user to place points along the desired
contour of the foreground object. Dijkstra’s shortest pathalgo-
rithm is used to compute the path between neighboring points.
However, in the cases of low contrast or noisy boundaries, the
shortest path may “shortcut” the desired boundary. This can
be improved by using more effective arc weights [8]. Another
problem with the intelligent scissors is that for highly textured
(or un-textured) regions there exist many alternative “minimal”
paths, which requires a large number of user interactions in
order to obtain a satisfactory result.

Most recent algorithms such as the graph cut based meth-
ods [1], [9], [10] consider both regional and boundary proper-
ties. With the graph cut based methods, an image is mod-
elled as a graph where each node represents a pixel and
two neighboring nodes are connected with a weighted edge
defined as the distance between the pixel values. Moreover,
the graph cut algorithm [1] models foreground and background
pixel values according to histograms. Particularly, two virtual
nodes are added to the graph to denote the foreground and
the background models. The max-flow/min-cut algorithm is
employed to classify the nodes. To initialize the models, both
foreground and background seeds are needed. The LazySnap-
ping work [9] integrates intuitive user interfaces, including
foreground/background strokes and boundary polygon editing,
with the graph cut algorithm for easy interactive image seg-
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mentation.
The GrabCut method [10] extends the graph cut frame-

work to segment color images, where the foreground and
background colors are modeled by Gaussian mixture models.
The GrabCut method supports various types of user inputs,
including a bounding box to enclose the foreground object,
a lasso input for difficult images, foreground and background
strokes for local editing, and a boundary brush for matting.The
GrabCut method can achieve good performance in segmenting
the images whose foreground and background colors are well
separable, but its performance is often unsatisfactory forthe
images whose foreground and background share similar color
distributions such as in cluttered or camouflaged images.

One inherent limit for graph cut based methods [1], [9],
[10] lies in its underlying assumption that an object’s shape
is best described by the shape with smallest boundary length.
This does not hold for very sophisticated shapes such as bush
branches or hair. Such methods do not cope well with noise
or interlace effects in videos due to the assumption.

Another popular interactive image segmentation approach
is the SIOX algorithm [11], [12] derived from color signature,
which has been implemented in image processing softwares
including GIMP, Inkscape, and Blender. The SIOX algorithm
also depends heavily on the foreground and background color
distributions. In addition, it requires a wise selection ofrepre-
sentative foreground. The SIOX algorithm works well with
noise and videos, but sometimes overcomplicates a shape,
introducing holes and other artifacts.

Recently, the random walks algorithm and its extensions [2],
[13], which also model an image as a graph, have been adopted
for various image processing tasks. It has been demonstrated
in [2] that the random walks algorithm can achieve better
image segmentation performance than the graph cut algorithm.
Similarly, the random walks algorithm requires the input of
foreground and background seeds. However, the random walks
algorithm lacks a global color distribution model, therefore it is
very sensitive to the positions and quantities of foreground and
background seeds. The random walks algorithm is essentially
an approach that minimizes a Dirichlet energy with bound-
ary conditions, where different boundary conditions (different
input seeds) always result in different harmonic functions.

More recently, Bai and Sapiro [14] proposed a geodesic
framework based on computing weighted geodesic distances
from individual pixels to the user-provided scribbles for inter-
active image and video segmentation. This algorithm, again,
depends on sufficiently separable color distributions of the
foreground and the background. The GeoS algorithm [15]
further extends the geodesic framework on improving the
processing speed and relaxing the connectivity requirement,
i.e., each segmented region needs to be connected to the
corresponding input stroke. The performance of GeoS is very
close to the min-cut algorithm while the computational timeis
reduced significantly. In fact, as described in [16], the graph
cuts, random walks, and geodesics algorithms can be unified
under the same optimization framework with different param-
eter values. The major limitation of the geodesics algorithms
is that it is very sensitive to the seed locations since different
seed locations result in different geodesic distances for each

pixel.
Another class of algorithms [17] uses the image foresting

transform (IFT) to provide a common framework for inter-
active boundary-based segmentation such as [18], [7] and
interactive region-based segmentation such as different types
of watersheds and geodesic distances [14]. In particular, [19]
presents a differential IFT for watershed-based and fuzzy-
connected segmentation, whose response time for interactive
segmentation corrections is sublinear in practice. The theoret-
ical comparison between the IFT based segmentation methods
and the graph cut algorithm is given in [20], which shows that
the two methods are closely related, and they produce exactly
the same segmentation result under necessary conditions.

B. Our Work

One weakness in the existing interactive image segmen-
tation algorithms is the lack of more intelligent ways to
understand the intention of user inputs. Sometimes the user
intends to provide cues for regions while at other times the
user intends to focus on the boundaries. In other words, a fun-
damental question we want to ask is:Can an interactive image
segmentation algorithm be intelligent enough to understand
the user’s intention in different scenarios?When segmenting
a difficult image such as a cluttered or camouflaged scene, the
user frequently struggles with laborious local editing because
the user cannot effectively communicate his intentions with the
underlying segmentation engine. Even with more and more
scribbles, the segmentation result still may not be what the
user wants.

In this paper, we do not attempt to figure out a single
universal intelligent means to acquire user feedback and
instead we advocate the use of multiple types of intuitive
inputs to better reflect the user’s intention under different
scenarios. In particular, we propose a constrained random
walks algorithm that facilitates the use of three types of
user inputs: (1) foreground and background seed input, (2)
soft constraint input, and (3) hard constraint input, as well
as their combinations. The foreground and background seed
input allows a user to draw strokes to specify foreground
and background seeds. The soft constraint input allows a
user to draw strokes to indicate the region that the boundary
should pass through. The hard constraint input allows a user
to specify the pixels that the boundary must align with. Note
that although the GrabCut [10] and the LazySnapping [9]
approaches also support multiple user inputs, different inputs
are used at different processing stages. In comparison, the
three types of user inputs and any of their combinations
can be supported by our coherent computational framework
consisting of the constrained random walks algorithm and a
local editing algorithm that imposes soft and hard constraints
and allows more precise contour refinements.

II. CONSTRAINED RANDOM WALKS

In this section, we extend the random walks algorithm [2]
to a constrainedrandom walks algorithm to facilitate the use
of various user inputs in interactive image segmentation.
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A. The Proposed Model

Similar to the random walks algorithm [2], we formulate the
segmentation problem on a graph, where each node represents
a pixel and neighboring nodes are connected with undirected
edges. In particular, a graph is represented by its verticesand
edges asG =< V, E >, whereV = {vi} is a set of vertices
vi and E = {eij} is a set of edgeseij bounded by vertices
vi andvj . The weight for edgeeij is denoted aswij , and the
degree of nodevi is defined asdi =

∑

j wij , i.e., the sum of
the weights of all the edges that incident onvi.

In the random walks algorithm, the user input includes fore-
ground seedsSF and background seedsSB , whereSF ⊂ V,
SB ⊂ V, and SF

⋂

SB = ∅. Let pi (0 ≤ pi ≤ 1) denote
the probability that a random walker starting fromvi will first
arrive at one of the foreground seeds before reaching any of
the background seeds. Clearly,pi = 1 for any vi ∈ SF and
pi = 0 for any vi ∈ SB . For any of the remaining vertices
vi ∈ V \ (SF ∪ SB), the random walks algorithm suggests

pi =
1

di

∑

eij∈E

wij · pj (1)

This leads to a linear system of equations withpi for vi ∈
V \ (SF ∪ SB) as unknowns. Solving the equations gives
the probability of vertexvi first arriving atSF . Finally, the
foreground object is segmented as the set of pixels whose
probabilities are not less than 1/2.

We now incorporate two other types of user inputs as
constraints into the random walks algorithm. We call such an
extension asconstrained random walks. In particular, bound-
ary brush strokes that roughly mark parts of the boundary
are introduced as thesoft constraint. A vertex on which the
soft constraint is imposed has the property that the difference
between its probability and 1/2 is within a small prescribed
range [−ǫ, ǫ]. The second type of user inputs, boundary
pixel selector, which selects pixels on the desired contour, is
introduced as thehard constraint. A vertex on which the hard
constraint is imposed has a probability of 1/2.

Let SS andSH denote soft boundary seeds and hard bound-
ary seeds, respectively. We define the constrained random
walks problem as solving the following equations:

pi =
1

di

∑

eij∈E

wij · pj , vi ∈ V \ (SF ∪ SB ∪ SH) (2)

s.t.,















pi = 1, vi ∈ SF

pi = 0, vi ∈ SB

pi = 0.5, vi ∈ SH

|pi − 0.5| ≤ ǫ, vi ∈ SS , ǫ ≈ 0+

It is difficult to find an effective solver for the above problem
due to the soft constraint. Therefore, we reformulate the
problem into

min
∑

eij∈E

wij(pi − pj)
2 + λ

∑

vi∈SS

(pi − 0.5)2 (3)

s.t.,







pi = 1, vi ∈ SF

pi = 0, vi ∈ SB

pi = 0.5, vi ∈ SH

where λ is a tradeoff factor controlling the importance of
the difference between the probability of each soft-constraint
vertex and 1/2.

Differentiating the objective function of Eq. (3) with respect
to eachpi for vi ∈ V \ (SF ∪ SB ∪ SH) and setting it equal
to zero, we arrive at

pi =

{

1

di+λ
(
∑

j wij · pj + λ · 0.5), vi ∈ SS
1

di
(
∑

j wij · pj), vi ∈ V \ (SF ∪ SB ∪ SH ∪ SS)
(4)

This can be considered as adding a virtual neighbor vertex
with probability of 1/2 to each soft-constraint vertex through
a virtual edge with weightλ. Empirically we setλ = 1 for all
the experiments.

In this way, the constrained random walks problem becomes
the problem of solving a linear system of equations shown in
Eq. (4). Many efficient methods are available for solving such
a sparse linear system. Note that the connectivity propertyof
the random walks algorithm remains true for the proposed
constrained random walks.

B. Edge Weights

To achieve a good segmentation, the edge weights play
a critical role since each edge weightwij describes the
likelihood of a random walker moving to the neighboring
node. Each weight should be defined based on the distance
between two neighboring pixels/nodes. In the random walks
algorithm [2], the distance between two nodes is defined as
dij = ||gi − gj ||, which is the Euclidean distance in color.

Our studies show that the performance of the random walks
algorithm is sensitive to strokes’ positions mainly because the
random walks algorithm only utilizes the information of color
changes without considering absolute color information [13].
Therefore, even in the cases that the foreground and back-
ground colors are sufficiently separable, the random walks
algorithm may require more carefully drawn strokes compared
to the GrabCut. On the other hand, prior models that describe
the color/feature distributions are often used in other popular
interactive image segmentation algorithms such as the GrabCut
algorithm.

In fact, prior models have also been incorporated into the
random walks framework in [13], where two virtual nodes
are added in the graph to represent the foreground and the
background. The foreground/background node is connected
to every pixel node and the edge weight is assigned to the
probability that the pixel fits the foreground/background prior
model. However, the drawback of this work is that the segmen-
tation result often contains multiple disconnected components,
which is undesirable for single object segmentation.

In this study, we propose to directly incorporate prior mod-
els into the distance function to avoid the above-mentioned
disconnection problem. In particular, edge weightwij and the
corresponding distance are defined as

wij = exp(−β · d2ij)

d2ij = (1− α)||gi − gj ||
2 + α(Pr(vi)− Pr(vj))

2 (5)

where the second term(Pr(vi)− Pr(vj))
2 is the prior term,

Pr(vi) denotes the normalized probability that nodevi fits the
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foreground prior model,α ∈ [0, 1] is a tradeoff factor, andβ
is a scaling factor. The values of||gi − gj ||

2 and (Pr(vi) −
Pr(vj))

2 are normalized to[0, 1] individually.
The foreground and the background are modeled by the

Gaussian mixture model(GMM) and their seedsSF andSB

are used to estimate the model parameters. LetPr(vi|F)
(Pr(vi|B)) denote the probability that nodevi fits the
foreground (background) GMM. The normalized probability
Pr(vi) is defined as

Pr(vi) =
− logPr(vi|F)

− logPr(vi|F)− logPr(vi|B)
(6)

According to Eq. (5), it is clear that the second term
(Pr(vi)−Pr(vj))

2 should dominate when the foreground and
background colors are well separable. Otherwise, the first term
||gi − gj ||

2 should dominate. This gives us a hint on how to
select the parameterα. In our experiments, we setα to be
the distance between the foreground and background GMMs.
A natural measure between two distributions is the Kullback-
Leibler divergence. We use the Monte-Carlo simulations to
approximate the KL-divergence betweenF and B. More
specifically, we define

α =
1

n

n
∑

i=1

|
logPr(vi|F)− logPr(vi|B)

logPr(vi|F) + logPr(vi|B)
| (7)

wheren is the total number of pixels. After determining the
parameterα, we can calculate all the distances. The only
free parameter left in the proposed algorithm isβ, which is
empirically set to 3 for all the experiments.

We would like to point out that the proposed edge weighting
method could be applied to any graph-based algorithm such as
random walks, graph cuts, and normalized cuts [21]. Addition-
ally, a similar idea was given in [22], where Parzen windows
were used to estimate a foreground/background distribution
for setting edge weights in 3D image segmentation.

III. L OCAL CONTOUR DEFORMATION

Through the proposed constrained random walks algorithm,
a continuously valued probability map is computed where
the value of each pixel indicates its probability of belong-
ing to the foreground. An initial contourC is obtained by
thresholding the probability map at 1/2. As will be shown,
the above algorithm can still have problems for segmenting
along weak boundaries. One way to improve the segmentation
performance is to introduce more user inputs and then re-
run the algorithm or formulate the segmentation editing task
as another global energy minimization problem such as [23].
However, this may often affect the final segmentation results
globally. Unexpected fluctuation effect may occur during the
process of interactive object cutout [24] and re-running the
algorithm or solving another global optimization increases the
system complexity. On the other hand, in many circumstances,
there is no need to cause a global change while only local
editing is desired.

Therefore, we further propose a local refinement step,
where only additional hard and soft boundary constraints are
allowed to be used to indicate the problematic boundaries.

Even without additional hard and soft boundary constraints,
this local refinement still needs to be performed if there is
any soft or hard boundary stroke being input in the previous
global stage. This is because the constrained random walks
algorithm itself cannot guarantee achieving the purposes of
both hard and soft boundary constraints. For example, it can
happen that all the neighboring nodes of a hard constraint
node have probabilities larger than 1/2 or less than 1/2, for
which the resulting contour will not pass through the hard
constraint node. Similarly, for a soft boundary stroke, if the
weighting parameterλ is too small, the resulting contour may
not pass through the stroke. On the other hand, ifλ is too
large, the pixels masked by the soft boundary strokes will
have probability values very close to 1/2, for which the precise
boundary is difficult to locate by thresholding.

For the local refinement step, our basic idea is to first
determine the pixels/positions that the contour must pass and
then build the correspondences between these pixels and the
pixels on the initial contour. After that, the initial contour
is deformed with the correspondences used as positional
constraints and the rest of the pixels on the initial contour
as stay-put constraints. In this way, the contour can be pulled
to the specified boundary locations locally, and the smoothness
near the pulled positions can be preserved.

A. Optimal Path in Soft Boundary Stroke

Within each soft boundary stroke, an optimal path called
soft boundary path needs to be searched first. We use Dijkstra’s
shortest path algorithm to find the path. The edge weight is
adapted from the “live-wire” path selection tool in [18], [7]. In
particular, Letvp and vq denote two neighboring pixels. The
local costepq of the directed edge fromvp to vq is defined as a
weighted sum of three components: Laplacian zero crossings
fz, gradient magnitudefg, and the gradient directional cost
fd(p, q), i.e.,

epq = {0.1 · fz(q) + 0.6 · fg(q) + 0.3 · fd(p, q)}/len, (8)

where the division bylen, denoting the length of the path from
vp to vq, is to avoid the “shortcut” problem. The weights in
Eq. (8) are empirical values.

The purpose of having the Laplacian zero-crossing term
in Eq. (8) is for edge localization. The gradient magnitude
term is to distinguish between a strong edge and a weak edge.
The gradient direction or orientation term adds a smoothness
constraint to the boundary by associating a relatively highcost
for sharp changes. The details about how to computefz, fg,
andfd can be found in [18]. Note that the proposed local cost
in Eq. (8) is almost the same as that in [18] except that we
use different weights and apply the normalization bylen.

B. Finding Correspondences

Correspondences between the user input soft and hard
boundary points and the initial contourC obtained in the
global stage are established before contour deformation. The
correspondence for a hard constraint point is defined as the
point on the contour with minimum geometric distance. For
soft boundary constraints, we match the points from the initial
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contour to the soft boundary path inside the stroke. First, the
two end points of the soft boundary path are matched to the
points on the contour with minimum geometric distance, and
then the in-between points of the soft boundary path and the
contour are matched by bilinear interpolation. We obtain a
correspondence set as

{vh
1 ,v

h
2 , · · · ,v

h
k1} → {h1,h2, · · · ,hk1} (9)

{vs
1,v

s
2, · · · ,v

s
k2} → {s1, s2, · · · , sk2}

wherehi and si are the hard and soft boundary constraint
points, andvh

i and v
s
i are the corresponding points on the

initial contour.

C. Refinement by Contour Deformation

The contour deformation problem can be summarized as:
given the initial contourC, the positional constraints resulted
from the correspondences for the hard and soft boundary
points (Eq. (10)), and the stay-put constraints using the rest
of the pixels in the initial contour, find the new contour with
shape preservation and smoothness. We formulate this problem
as

argmin
v
′

(||Lv′ − Lv||2 + ω
∑

j

||vs
j
′ − sj ||

2) (10)

+
∑

j∈Cstay

f(dist(j))||v′
j − vj ||

2, s.t.,vh
j

′
= hj

whereω (empirically set to 1 in our experiments) is a tradeoff
parameter for soft boundary constraint points, andv and v

′

denote two column vectors whose elementsvj and v
′
j are

the vertices on the initial contourC and the deformed contour
C′, respectively. As the complexity of contour deformation is
very low, we use all the pixels on the contour for deformation.
It is also possible to set a minimum distance between the
neighboring sampling points on the contour.

The first term||Lv′−Lv||2 in Eq. (10) is adapted from the
Laplacian mesh processing [25] to preserve the global shape
with the transform matrixL defined as

L = I −D−1A, (11)

whereD is a matrix withDii = 2 andA is the adjacent matrix
defined as

Aij =

{

1 |i− j| = 1
0 otherwise

(12)

For the stay-put constraints in Eq. (10), we use the distance
function f(dist(i)) as the weight. Particularly,dist(i) is the
normalized geometric distance from pixelv(i) to the input
strokes and the functionf can be any monotonic increasing
function such that pixels near the input strokes have small
weights and those far away from the input strokes have large
weights. It follows that the contour pixels far away from the
inputted stroke that are considered to be of high confidence are
unlikely to be moved. In this research, we usef(x) = x. In
addition, the pixelsvi with f(dist(i)) larger than a predefined
threshold are excluded from the contour deformation step.

The minimization problem (10) can be converted into the
form of a sparse linear system by differentiating the objective

function with respect to the unknown vertices and then letting
these partial derivatives equal zero. Solving the sparse linear
system thus gives the new contour.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, experiments are conducted to evaluate the
effectiveness of the proposed framework. The test images
come from the Berkeley segmentation dataset1 and the MSRC
ground truth dataset provided in [26]2.

A. With Only Foreground and Background Strokes

We first consider the case that uses only foreground and
background strokes as inputs. In this case, our proposed
framework degenerates to the random walks algorithm [2]
except that our approach incorporates the prior information
into the edge weights as shown in Eq. (5).

Fig. 1 shows the segmentation results of three test images
using the random walks algorithm and our approach. Note
that for fair comparison, the same foreground and background
strokes are used to initiate both algorithms. It can be seen
that the proposed method significantly outperforms the random
walks algorithm on the three test images whose foreground and
background colors are well separable, which demonstrates the
effectiveness of the newly incorporated edge weights.

We have also tested the proposed algorithm on the MSRC
ground truth data set [26], which consists of 50 test images.
To the best of our knowledge, this is currently the only
publicly available image segmentation data set that provides
trimaps and ground truth. Table I summarizes the achieved
error rates by the proposed algorithm and other state-of-the-
art algorithms. The error rate is defined as

ǫ =
no. misclassified pixels

no. pixels in unclassified region
, (13)

where “misclassified pixels” excludes those from the un-
classified region of the expert trimap [11], [26]. Our pro-
posed algorithm achieves an error rate of 4.08% with a
variance of 3.72%. For fair comparison, all the algorithms
use exactly the same trimaps provided with the MSRC data
set as the user inputs. The error rates for other state-of-
the-art algorithms are either directly quoted from the best
results reported in literature or obtained through our im-
plementation. The LazySnapping code is obtained online
from ETH Zurich (http://www.cg.inf.ethz.ch/teaching/former/
imagesynthesis06/miniprojects/p2/index.html).

Note that a simple adaptive threshold method was reported
in [27] that can be combined with the existing algorithms such
as the random walks to further reduce the error rate. However,
the adaptive threshold method is very specific to the MSRC
data set or a boundary brush tool where the unseeded region
only covers a small band along the object boundary. It is not
a general method that can be applied to any segmentation.
Specifically, the adaptive threshold method does not work well

1Available at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench/

2Available at http://research.microsoft.com/en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm
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(a) input image (b) RW probability map (c) RW foreground (d) our probability map (e) our foreground

Fig. 1. Comparison between the random walks algorithm and theglobal step of the proposed framework to demonstrate the effectiveness of the proposed
edge weights. From left to right: (a) input images with strokes (red for foreground and blue for background); (b) the probability maps by random walks; (c)
the segmentation results by random walks; (d) the probability maps by the proposed method (showing more confident separation); (e) the segmentation results
by the proposed method. The KL-divergence values of the threetest images are 0.78, 0.84 and 0.53, respectively. The parameter β in Eq. (5) is fixed to 3
and 500 for our method and the random walks algorithm, respectively. Best viewed electronically (with zoom-in).

for images with large unknown area. Therefore, we do not
compare with the results with the adaptive threshold method
reported in [27].

For most of the images in the MSRC data set, the proposed
method achieves very low error rates. High error rates occur
in images where the input foreground seeds only cover a small
portion of the foreground and thus do not cover all the distinct
colors of the foreground, while pixels with similar colors are
masked by the background seeds. For such cases, the GrabCut
algorithm and the random walks algorithm also perform poorly
(and usually worse).

Moreover, by simply drawing one or two additional fore-
ground and/or background strokes, or by the aid of soft and/or
hard constraints, the error rates of such failure cases can be
significantly further reduced using our unified approach. One
example is that by adding several foreground and background
strokes to the seven images (with an error rate higher than 9%
by our method initially) in the MSRC data set, we reduce the
initial errors dramatically and the overall average error rate of
the 50 images is dropped from 4.08% to 2.84%.

We would like to point out that, although both our method
and LazySnapping use multiple types of user inputs, our
method is quite different from LazySnapping. In particular,
in terms of user interface, LazySnapping uses different al-
gorithms to handle different inputs. To the user, the region
segmentation and boundary editing are two separate steps. On
the contrary, our work supports multiple intuitive inputs and
any of their combinations under one computational framework.
In terms of speed, our approach is faster as LazySnapping
refines the entire contour in the boundary editing step using
energy minimization by graph cut, while in our framework
boundary editing is a local deformation process.

TABLE I
ERROR RATE COMPARISON USING THEMSRC DATASET WITH EXACTLY

THE PROVIDED TRIMAPS.

Method Error rate
GMMRF [26] 7.9% (reported in [26])
GrabCut [10] 5.66% (our implementation)

SIOX [11] 9.1% (reported in [11])
Random walks [2] 5.4% (reported in [27])
LazySnapping [9] 6.65%

Proposed 4.08%

B. With Additional Soft and Hard Constraints

Fig. 2 shows an example of utilizing additional constraint
in the constrained random walks framework. As illustrated in
the figure, by only inputting the foreground and background
strokes, the weak boundary between the object and the back-
ground cannot be detected precisely. However, with only one
additional soft boundary stroke (which is only partially drawn
on the boundary), a much better result is obtained.

We now evaluate the proposed local editing algorithm. Fig. 3
shows the effect of the local editing with a soft boundary
constraint. The computed probability map in Fig. 3(c) tells
that the pixels near the soft boundary (the tail of the cat) have
probability values very close to 1/2. Thus, the thresholding
operation does not lead to a clean boundary within the soft
stroke, as shown in Fig. 3(f). On the other hand, the local
editing algorithm, i.e., first finding the shortest path within the
soft stroke that captures a good boundary and then deforming
the initial contour to the shortest path, results in a betterobject
extraction, as shown in Fig. 3(g).

Fig. 4 shows the effect of the local editing with hard
boundary constraints. In particular, after the global stepwith
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(a) input image (b) foreground 1 (c) + soft stroke (d) foreground 2

Fig. 2. Comparing the results with and without soft constraint for the constrained random walks algorithm. From left to right: (a) input image with strokes
(red for foreground and blue for background); (b) corresponding result; (c) with an additional soft boundary stroke (ingreen); (d) corresponding new result.

(a) original (b) with strokes (c) probability map

(d) w/o local editing (e) with local editing (f) close-up of (d) (g) close-up of (e)

Fig. 3. Comparing the results with and without local editing.(a) original image; (b) original image with strokes (red, blueand green for foreground,
background and soft boundary strokes, respectively); (c) the probability maps by the global step of the proposed framework; (d) the segmentation result
without local editing; (e) the segmentation result with local editing; (f) close-up of (d); (g) close-up of (e).

the foreground and background strokes, the object is fairlywell
segmented except some small inaccuracies as shown in the
close-up in Fig. 4(c). This problem can be easily fixed by using
hard boundary constraints. Specifically, by marking five hard
boundary pixels, the proposed local editing algorithm snaps
the initial contour to the specified boundary pixels through
local contour deformation, which results in a smoother and
more accurate object contour.

C. More Comparisons

Fig. 5 shows the comparison of the segmentation results
among the GrabCut algorithm, the random walks algorithm,
and the proposed framework. For the case using the GrabCut
algorithm, a rectangle covering the object is not sufficientto
obtain a good result. Thus, foreground and background strokes
need to be continuously added until a reasonable result is
achieved. For the case using the random walks algorithm,
adding more strokes may cause unexpected fluctuation, i.e.,the
previously correctly labeled regions change their labels when
more strokes are added. On the contrary, by using the proposed

framework that facilitates different types of user inputs,we are
able to refine the initial results more efficiently and effectively
(in two steps interaction as opposed to three).

Compared with the popular GrabCut algorithm that requires
iterative optimization, the proposed framework only requires
to solve sparse linear equations and is thus much faster in
speed. The constrained random walks module typically takes
less than three seconds to process an image with a resolution
of 640 × 480, and the local editing module can generate the
result virtually instantly. For the MSRC data set with the
provided trimaps, the average processing time of our proposed
framework is 1.48 seconds while that of Grabcut is 4.64
seconds.

D. Limitations

The proposed constrained random walks algorithm follows
the random walks framework. As mentioned, without the soft
and hard boundary constraints, the only difference between
our method and the random walks lies in the edge weighting.
Therefore, the performance of the proposed method is close
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(a) input image (b) foreground 1 (c) close-up of (b) +
hard constraints

(d) foreground 2

Fig. 4. An example of the local editing with hard boundary constraints. (a) the input image with strokes (red for foregroundand blue for background);
(b) the segmentation result by the global step of the proposedframework; (c) close-up of (b) with additional five hard boundary pixels in magenta; (d) the
segmentation result after local editing.

(a) GrabCut input1 (b) GrabCut output1 (c) GrabCut input2 (d) GrabCut output2 (e) GrabCut input3 (f) GrabCut output3

(a) RW input1 (b) RW output1 (c) RW input2 (d) RW output2 (e) RW input3 (f) RW output3

(a) our input1 (b) our output1 (c) our input2 (d) our output2

Fig. 5. Comparing the segmentation results of the GrabCut algorithm, the random walks algorithm, and the proposed framework.From top to bottom:
the results of GrabCut, the results of random walks (RW), and the results of the proposed framework. The red, blue, and greenstrokes denote foreground,
background, and soft boundary strokes, respectively. Bestviewed electronically (with zoom-in).

to random walks except for images whose foreground and
background colors are well separable, where the proposed
method outperforms the random walks. With the soft and hard
boundary tools as a whole, the proposed framework provides
an easier tool for users to segment difficult images, such as
noisy images and images with complex shapes.

In general, the proposed framework performs well on most
images with straightforward user inputs. It can do well for
camouflaged images and images with thin structures if the user
inputs are carefully placed. One example is shown in Fig. 3,
where foreground and background strokes are carefully placed
at each side of the object boundary in order to well segment
the object.

With a certain amount of user interaction, failure cases
can occur for hairy objects or thin structures whose color
overlapped with the background color. In this case, the pro-
posed edge weighting degenerates to that of the random
walks algorithm, while intensive additional user efforts are
required to delineate the fine boundary using the proposed
boundary tools. We would like to point out that since the
proposed framework is a hard segmentation method, it cannot
well handle transparent or semi-transparent boundaries such

as semi-lucent hair, for which we have to rely on matting
techniques.

V. CONCLUSIONS

In this paper, we have proposed an interactive image
segmentation framework that consists of two components:
constrained random walks and local contour deformation. The
proposed framework supports multiple intuitive types of user
inputs and therefore combines the advantages of different user
interactions. The foreground and background brushes are the
most commonly used interaction tools as they are easy to use
and instructive to the algorithms. The soft boundary brush
and the hard boundary pixel selector are extremely useful
to handle weak boundaries, where adding more foreground
or background strokes may cause unexpected fluctuation in
the segmentation results. These tools enable the proposed
framework to work fast and accurately with ease. The superior
performance of the algorithm has been demonstrated by a
number of experiments on the benchmark data sets.

The contributions of this paper can be summarized as fol-
lows. First, the proposed constrained random walks algorithm
together with the proposed local editing algorithm supports
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the three types of user inputs and their combinations in a
coherent and unified framework. Second, the region prior term
is included in the edge weights so that the proposed con-
strained random walks algorithm does not lose the connectivity
property and is less demanding on the positions and quantities
of the user input strokes than the original random walks
algorithm [2]. Third, the proposed local editing algorithm
also allows additional local refinement to reach a satisfactory
segmentation.

The proposed framework can be extended in several ways.
First, its runtime can be further improved. In particular, similar
to the random walks algorithm, the complexity of the proposed
method lies in solving a sparse linear system, whose dimension
depends on the number of unknown pixels in the image and
the adjacency structure (e.g., 4-connected or 8-connected).
There are many efficient algorithms for solving sparse lin-
ear equations and we adopt the sparse direct linear solver
implemented in TAUCS (http://www.tau.ac.il/∼stoledo/taucs/).
Without code optimization, the response time of the proposed
framework is typically around 5 seconds for a640 × 480
image on a PC with Intel 2.67GHz CPU and 2GB RAM. The
response time can be greatly improved through the graphics
processing unit (GPU) implementation [28]. The local editing
step also requires solving of a sparse linear system, whose
dimension depends on the sampling of the object contour. As
the number of pixels on the object contour is much smaller
than image size, even without sampling, the local editing step
gives immediate response.

Second, it is interesting to extend the proposed method
to soft segmentation and video segmentation. In fact, the
random walks algorithm has been successfully extended for
soft segmentation [28]. Similarly, we could integrate effective
boundary matting tools into the proposed method for soft
segmentation. Extending our method to video segmentation
is not straightforward. This is because video data consists
of thousands of video frames. It is impossible for a user to
provide inputs for each video frame. Thus, it becomes critical
to design an intuitive and user-friendly interface to efficiently
acquire user feedback.

Last but not least, it is meaningful to conduct a user
study to compare our method with different interactive image
segmentation algorithms in terms of usability. The user study
should involve many professional and unprofessional usersto
segment a large number of test images. With the intensive
user study, it is possible to create a metric to measure the
amount and the complexity of interaction that is required
for an interactive image segmentation algorithm to achieve
satisfactory results.
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