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Abstract—One weakness in the existing interactive image A. Related Work
segmentation algorithms is the lack of more intelligent ways
to understand the intention of user inputs. In this paper, we In general, interactive image segmentation can be cladsifie
advocate the use of multlple intuitive user inputs to better |nt0 two Categorles hard Segmentat|on and Soft Segmentaﬂ

reflect a user’s intention. In particular, we propose a constraine . ;
random walks algorithm that facilitates the use of three types of Hard segmentation algorithms such as [1], [2] produce a

user inputs: (1) foreground and background seed input, (2) sof Pinary map, i.e., a pixel belongs to either foreground or
constraint input, and (3) hard constraint input, as well as their background, while soft segmentation algorithms such as [3]
combinations. The foreground and background seed input allows [4] extract a fractional (fuzzy) matte for an image. In this
a user to draw strokes to specify foreground and background research, we only consider the hard segmentation probem. |

seeds. The soft constraint input allows a user to draw strokes . . . . S
to indicate the region that the boundary should pass through. the following, we give a brief review on the related intefaet

The hard constraint input allows a user to specify the pixels that IMage segmentation algorithms and tools.

the boundary must align with. Our proposed method supports Early interactive image segmentation algorithms utilize
all three types of user inputs in one coherent computational eijther regional properties such as Adobe’s magic wand or
framework consisting of a constrained random walks and a local boundary properties such as active contour [5] and intsilig

editing algorithm, which allows more precise contour refinement. . 61 71. Th . d tool start ith I
Experimental results on two benchmark data sets show that scissors [6], [7]. € magic wand (ool staris with a sma

the proposed framework is highly effective and can quickly and User-specified region. The region grows through connecting
accurately segment a wide variety of natural images with ease. neighboring pixels that fall within some adjustable tolera

Index Terms—Interactive image segmentation, digital image range of the color statistics of thg spepified region. With th
editing, multiple user inputs, random walks algorithm. active contour method, the user is typically asked to place a
contour near the desired boundary and the algorithm evolves
the boundary to snap to the object contour. The main problem
with the active contour method is that the contour is likely
to be trapped in a local minimum. The intelligent scissors

Interactive image segmentation involves minimal user i9Orithm requires the user to place points along the desire
teraction to incorporate user intention into the segmeantat contour of the foreground object. Dijkstra’s shortest pgo-

process and is an active research area in recent years becaJihm is used to compute the path between neighboring points
can achieve satisfactory segmentation results that atéaima HOWeVer, in the cases of low contrast or noisy boundaries, th

able by the state-of-the-art automatic image segmentati%fhorteSt path may “shortcut” the desired boundary. This can

algorithms. This paper considers the same problem of h& ImProved by using more effective arc weights [8]. Another
to interactively segment a foreground object out from itgroblem with the |nt'eII|gent SCiSsors is that for hlghlymﬂ?ed
surrounding background. Our goal is to develop intuitivel arlor un-text_ured) regions there exist many aIterna’Flve imfr_l _
intelligent image segmentation algorithms and tools tHata paths, Whlch_reqmre_s a large number of user interactions in
users to interactively guide the segmentation algoritha VPrder to obtain a satisfactory result.

a small amount of intuitive interactions until a satisfagto ~Most recent algorithms such as the graph cut based meth-
segmentation result that reflects both user intentions af@s [1], [9], [10] consider both regional and boundary prepe
photometric features is achieved. ties. With the graph cut based methods, an image is mod-

For a good interactive image segmentation algorithm, thefied @s a graph where each node represents a pixel and
are two basic requirements: (1) given a certain user inpet, WO neighboring nodes are connected with a weighted edge
algorithm should produce intuitive segmentation that otfle defined as the dls.tance between the pixel values. Moreover,
the user intent; (2) the algorithm must be efficient so that € 9raph cut algorithm [1] models foreground and backgdoun
can provide instant visual feedback. pixel values according to histograms. Particularly, twgual

nodes are added to the graph to denote the foreground and

. . __the background models. The max-flow/min-cut algorithm is
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I. INTRODUCTION



mentation. pixel.

The GrabCut method [10] extends the graph cut frame-Another class of algorithms [17] uses the image foresting
work to segment color images, where the foreground am@nsform (IFT) to provide a common framework for inter-
background colors are modeled by Gaussian mixture modedstive boundary-based segmentation such as [18], [7] and
The GrabCut method supports various types of user inpuitsteractive region-based segmentation such as diffepgrast
including a bounding box to enclose the foreground objeaf watersheds and geodesic distances [14]. In particuléi, [

a lasso input for difficult images, foreground and backgtburpresents a differential IFT for watershed-based and fuzzy-
strokes for local editing, and a boundary brush for matfiffiee connected segmentation, whose response time for intezacti
GrabCut method can achieve good performance in segmentsggymentation corrections is sublinear in practice. Therdte

the images whose foreground and background colors are wedl comparison between the IFT based segmentation methods
separable, but its performance is often unsatisfactorytfer and the graph cut algorithm is given in [20], which shows that
images whose foreground and background share similar caflee two methods are closely related, and they produce gxactl
distributions such as in cluttered or camouflaged images. the same segmentation result under necessary conditions.

One inherent limit for graph cut based methods [1], [9],

[10] lies in its underlying assumption that an object’s shap

is best described by the shape with smallest boundary length Our Work

This does not hold for very sophisticated shapes such as bustbne weakness in the existing interactive image segmen-
branches or hair. Such methods do not cope well with noiggtion algorithms is the lack of more intelligent ways to
or interlace effects in videos due to the assumption. understand the intention of user inputs. Sometimes the user

Another popular interactive image segmentation approaghiends to provide cues for regions while at other times the
is the SIOX algorithm [11], [12] derived from color signagur user intends to focus on the boundaries. In other words, -a fun
which has been implemented in image processing softwadsmental question we want to ask@an an interactive image
including GIMP, Inkscape, and Blender. The SIOX algorithrsegmentation algorithm be intelligent enough to underbtan
also depends heavily on the foreground and background callee user’s intention in different scenario¥?hen segmenting
distributions. In addition, it requires a wise selectior@bre- a difficult image such as a cluttered or camouflaged scene, the
sentative foreground. The SIOX algorithm works well wittuser frequently struggles with laborious local editing duese
noise and videos, but sometimes overcomplicates a shabe, user cannot effectively communicate his intention& wie
introducing holes and other artifacts. underlying segmentation engine. Even with more and more

Recently, the random walks algorithm and its extensions [Zcribbles, the segmentation result still may not be what the
[13], which also model an image as a graph, have been adopteér wants.
for various image processing tasks. It has been demorttratein this paper, we do not attempt to figure out a single
in [2] that the random walks algorithm can achieve bettemiversal intelligent means to acquire user feedback and
image segmentation performance than the graph cut alguritinstead we advocate the use of multiple types of intuitive
Similarly, the random walks algorithm requires the input dhputs to better reflect the user’s intention under différen
foreground and background seeds. However, the random wadkenarios. In particular, we propose a constrained random
algorithm lacks a global color distribution model, therefd is walks algorithm that facilitates the use of three types of
very sensitive to the positions and quantities of foregtband user inputs: (1) foreground and background seed input, (2)
background seeds. The random walks algorithm is essentialbft constraint input, and (3) hard constraint input, aslwel
an approach that minimizes a Dirichlet energy with bounds their combinations. The foreground and background seed
ary conditions, where different boundary conditions @t input allows a user to draw strokes to specify foreground
input seeds) always result in different harmonic functions and background seeds. The soft constraint input allows a

More recently, Bai and Sapiro [14] proposed a geodesiger to draw strokes to indicate the region that the boundary
framework based on computing weighted geodesic distanegmuld pass through. The hard constraint input allows a user
from individual pixels to the user-provided scribbles foter- to specify the pixels that the boundary must align with. Note
active image and video segmentation. This algorithm, agathat although the GrabCut [10] and the LazySnapping [9]
depends on sufficiently separable color distributions @& thapproaches also support multiple user inputs, differepitis
foreground and the background. The GeoS algorithm [18fe used at different processing stages. In comparison, the
further extends the geodesic framework on improving tharee types of user inputs and any of their combinations
processing speed and relaxing the connectivity requirémegan be supported by our coherent computational framework
i.e.,, each segmented region needs to be connected to dbasisting of the constrained random walks algorithm and a
corresponding input stroke. The performance of GeoS is vegeal editing algorithm that imposes soft and hard constsai
close to the min-cut algorithm while the computational tisie and allows more precise contour refinements.
reduced significantly. In fact, as described in [16], thepbra
cuts, random walks, and geodesics algorithms can be unified
under the same optimization framework with different param
eter values. The major limitation of the geodesics algorgh In this section, we extend the random walks algorithm [2]
is that it is very sensitive to the seed locations since wifie to a constrainedrandom walks algorithm to facilitate the use
seed locations result in different geodesic distances dche of various user inputs in interactive image segmentation.

Il. CONSTRAINED RANDOM WALKS



A. The Proposed Model where )\ is a tradeoff factor controlling the importance of

Similar to the random walks algorithm [2], we formulate théhe difference between the probability of each soft-castr

segmentation problem on a graph, where each node represgﬁ gex and'1/.2. L . ,

a pixel and neighboring nodes are connected with undirecte iiferentiating the objective function of Eq. (3). W'th et

edges. In particular, a graph is represented by its vertioels to eachp; for v; € V'\ (S U Sp U Si) and setting it equal

edges ay =< V, & >, whereV = {v;} is a set of vertices to zero, we arrive at

v; and & = {e;;} is a set of edges,; bounded by vertices { T (O, wij -pi +X-05), v €Ss

v; andv;. The weight for edge;; is denoted asv;;, and the ~* d%(zj wij - pj), vi €V\(SpUSpUSHUSs)

degree of node; is defined asl; = }_; wj;, i.e., the sum of (4)

the weights of all the edges that incident on This can be considered as adding a virtual neighbor vertex
In the random walks algorithm, the user input includes foravith probability of 1/2 to each soft-constraint vertex thgh

ground seedsS and background seedss, whereSr c V, a virtual edge with weighh. Empirically we set\ = 1 for all

Sp C V,andSrNSp = 0. Let p; (0 < p; < 1) denote the experiments.

the probability that a random walker starting framwill first In this way, the constrained random walks problem becomes

arrive at one of the foreground seeds before reaching anyte® problem of solving a linear system of equations shown in

the background seeds. Clear}y, = 1 for any v; € Sy and EQ. (4). Many efficient methods are available for solvinghsuc

p; = 0 for any v; € Sp. For any of the remaining verticesa sparse linear system. Note that the connectivity propsity

v; € V\ (Sr U Sp), the random walks algorithm suggests the random walks algorithm remains true for the proposed
constrained random walks.

1
pi:J Z Wij - Pj 1)
" eieE B. Edge Weights

This leads to a linear system of equations withfor v; ¢ 10 achieve a good segmentation, the edge weights play

V\ (S U Sp) as unknowns. Solving the equations giveg critical role since each edge wgigblij descripes thg
the probability of vertexv; first arriving atSr. Finally, the likelihood of a random walker moving to the neighboring

foreground object is segmented as the set of pixels whdi¥de. Each Weight sh_ould _be defined based on the distance
probabilities are not less than 1/2. between two neighboring pixels/nodes. In the random walks

We now incorporate two other types of user inputs aaégorithm [2], the distance between two nodes is defined as

constraints into the random walks algorithm. We call such ﬁlﬁfoz ||gt¢ a_gﬂ'H'hWh'iE 'f‘tthhe Eufchdean dlsﬁcirr:ce in ((j:olor. Ik
extension agonstrained random walksn particular, bound- ur studies show that the performance ot the random walks

ary brush strokes that roughly mark parts of the boundaﬂlfomhm IS sensmv_e to strokes. .posmong mamly_bemﬂm
are introduced as thsoft constraint. A vertex on which the " ndom walks algorithm only utilizes the information of aol

soft constraint is imposed has the property that the diffeze changes without ponsidering absolute color informatio8].[1
between its probability and 1/2 is within a small prescribe&herefore’ even in the_ cases that the foreground and back-
range [, The second type of user inputs, boundar rour_1d colors are _sufﬂuently separable, the random walks
pixel selector, which selects pixels on the desired contisur Igorithm may require more carefully d_rawn strokes com@arg
introduced as théard constraint. A vertex on which the hard™ the GrabCut. Or_1 th.e ther hand, prior mod_els that describe
constraint is imposed has a probability of 1/2. the color/feature distributions are often used in otherutep

Let S andSy; denote soft boundary seeds and hard bour|i({l1_teractive image segmentation algorithms such as the@rab

ary seeds, respectively. We define the constrained randglrgor'thm'

. . o In fact, prior models have also been incorporated into the
walks problem as solving the following equations: random walks framework in [13], where two virtual nodes

are added in the graph to represent the foreground and the
background. The foreground/background node is connected
to every pixel node and the edge weight is assigned to the

1
pi=g > wip, wEV\(SrUSsUSH) (@)

ei; €EE

pi=1, v; € Sk probability that the pixel fits the foreground/backgrountp
st,d Pi=0 vi € Sp model. However, the drawback of this work is that the segmen-
"] pi =05, v; € S tation result often contains multiple disconnected congpis,
lpi —0.5| <e, v €Ss,e~0" which is undesirable for single object segmentation.

In this study, we propose to directly incorporate prior mod-
tls into the distance function to avoid the above-mentioned
disconnection problem. In particular, edge weight and the

It is difficult to find an effective solver for the above proirie
due to the soft constraint. Therefore, we reformulate t

problem into ) . :
corresponding distance are defined as
min 3 wilpi—p)’ 2 Y 057 @) wy = exp(~- &)
eijGS v;ESs
pi=1, v €Sk &% = (1= a)lg; — g5|1* + a(Pr(v)) = Pr(v;))*  (5)
st,s pi=0, v; €88 where the second tertPr(v;) — Pr(v;))? is the prior term,

pi =0.5, v; €8Sy Pr(v;) denotes the normalized probability that nagddits the



foreground prior modelp € [0, 1] is a tradeoff factor, an@g Even without additional hard and soft boundary constraints
is a scaling factor. The values ¢fy; — g;||* and (Pr(v;) — this local refinement still needs to be performed if there is
Pr(v;))? are normalized td0, 1] individually. any soft or hard boundary stroke being input in the previous
The foreground and the background are modeled by thebal stage. This is because the constrained random walks
Gaussian mixture modéGMM) and their seed$'» and Sy algorithm itself cannot guarantee achieving the purpodes o
are used to estimate the model parameters. Pefv;|F) both hard and soft boundary constraints. For example, it can
(Pr(v;|B)) denote the probability that node, fits the happen that all the neighboring nodes of a hard constraint
foreground (background) GMM. The normalized probabilithode have probabilities larger than 1/2 or less than 1/2, for
Pr(v;) is defined as which the resulting contour will not pass through the hard
1 constraint node. Similarly, for a soft boundary stroke,hié t
—log Pr(v;|F) o : .
(6) weighting parametek is too small, the resulting contour may
— log Pr(vil F) — log Pr(v;|B) not pass through the stroke. On the other hand) i too
According to Eq. (5), it is clear that the second terrfarge, the pixels masked by the soft boundary strokes will
(Pr(v;)— Pr(v;))? should dominate when the foreground antiave probability values very close to 1/2, for which the fmec
background colors are well separable. Otherwise, the éirstt boundary is difficult to locate by thresholding.
llg: — gj||* should dominate. This gives us a hint on how to For the local refinement step, our basic idea is to first
select the parametet. In our experiments, we set to be determine the pixels/positions that the contour must pads a
the distance between the foreground and background GMNMIsen build the correspondences between these pixels and the
A natural measure between two distributions is the Kullbackixels on the initial contour. After that, the initial comnto
Leibler divergence. We use the Monte-Carlo simulations te deformed with the correspondences used as positional
approximate the KL-divergence betweefi and . More constraints and the rest of the pixels on the initial contour
specifically, we define as stay-put constraints. In this way, the contour can besgull
to the specified boundary locations locally, and the smastin
(7) near the pulled positions can be preserved.

Pr(v;) =

Z ‘log Pr(v;|F) — log Pr(v;|B) |
log Pr(v;|F) + log Pr(v;|B)

wheren is the total number of pixels. After determining theA- Optimal Path in Soft Boundary Stroke
parametera, we can calculate all the distances. The only Within each soft boundary stroke, an optimal path called
free parameter left in the proposed algorithmsiswhich is  soft boundary path needs to be searched first. We use Digkstra
empirically set to 3 for all the experiments. shortest path algorithm to find the path. The edge weight is
We would like to point out that the proposed edge weightingdapted from the “live-wire” path selection tool in [18]][Th
method could be applied to any graph-based algorithm suchpasticular, Letv, andv, denote two neighboring pixels. The
random walks, graph cuts, and normalized cuts [21]. Additiolocal coste,, of the directed edge from, to v, is defined as a
ally, a similar idea was given in [22], where Parzen windowseighted sum of three components: Laplacian zero crossings
were used to estimate a foreground/background distributig,, gradient magnitudef,, and the gradient directional cost
for setting edge weights in 3D image segmentation. fa(p,q), i.e

={0.1- f.(q) + 0.6 - fy(q) + 0.3 fa(p,q)}/len, (8)

mhere the division byen, denoting the length of the path from
to vy, is to avoid the “shortcut” problem. The weights in
g. (8) are empirical values.

I1l. LocAL CONTOUR DEFORMATION

Through the proposed constrained random walks algorith
a continuously valued probability map is computed whert

the value of each pixel indicates its probability of belong- The purpose of having the Laplacian zero-crossing term

ing to the foreground. An initial contou€ is obtained by . . - : .
thresholding the probability map at 1/2. As will be shown Eq. (8) is for edge localization. The gradient magnitude

the above algorithm can still have problems for segmentirgﬁ:\m Is to distinguish between a strong edge and a weak edge.

along weak boundaries. One way to improve the segmentatio Oﬁs?rggﬁgttgg%(gf: dg: okglegtsastgc;rllatttlar:maarde?;tsjmoothnes
performance is to introduce more user inputs and then tc y by 9 y foggst

run the algorithm or formulate the segmentation editindk tafor sharp changes. The details about how to compief,,

as another global energy minimization problem such as [Z%ndfd can _be found in [18]. Note that th_e proposed local cost

However, this may often affect the final segmentation resul Eq.. (8) is aImpst the same as that in [1.8] gxcept that we

globally. Unexpected fluctuation effect may occur during th'S€ different weights and apply the normalizationZby.

process of interactive object cutout [24] and re-running th

algorithm or solving another global optimization increasgiee B Finding Correspondences

system complexity. On the other hand, in many circumstgncesCorrespondences between the user input soft and hard

there is no need to cause a global change while only lod@undary points and the initial contour obtained in the

editing is desired. global stage are established before contour deformatiba. T
Therefore, we further propose a local refinement steporrespondence for a hard constraint point is defined as the

where only additional hard and soft boundary constraings gsoint on the contour with minimum geometric distance. For

allowed to be used to indicate the problematic boundariesft boundary constraints, we match the points from théainit



contour to the soft boundary path inside the stroke. Fir&, tfunction with respect to the unknown vertices and thenngtti
two end points of the soft boundary path are matched to ttteese partial derivatives equal zero. Solving the sparsati
points on the contour with minimum geometric distance, argystem thus gives the new contour.

then the in-between points of the soft boundary path and the

contour are matched by bilinear interpolation. We obtain a IV. EXPERIMENTS AND DISCUSSIONS

correspondence set as . . :
P In this section, experiments are conducted to evaluate the

viovh oo vy = {hy hy, - hy ) (9) effectiveness of the proposed framework. The test images
(VI VS, Vi) = {s1.S0,- - S} come from the Berkeley segmentation datasetd the MSRC

ground truth dataset provided in [26]
where h; ands; are the hard and soft boundary constraint

points, andv? and v$ are the corresponding points on th%_ With Only Foreground and Background Strokes
initial contour.

We first consider the case that uses only foreground and
. ] background strokes as inputs. In this case, our proposed
C. Refinement by Contour Deformation framework degenerates to the random walks algorithm [2]
The contour deformation problem can be summarized axcept that our approach incorporates the prior informatio
given the initial contoulC, the positional constraints resultednto the edge weights as shown in Eq. (5).
from the correspondences for the hard and soft boundaryFig. 1 shows the segmentation results of three test images
points (Eg. (10)), and the stay-put constraints using tis¢ reising the random walks algorithm and our approach. Note
of the pixels in the initial contour, find the new contour wittthat for fair comparison, the same foreground and backgroun
shape preservation and smoothness. We formulate thisgpnobktrokes are used to initiate both algorithms. It can be seen
as that the proposed method significantly outperforms theosand
. , 9 o 9 walks algorithm on the three test images whose foregroudd an
arg H},I,H(HLV = Lv[["+w Z Vi =s5ll7)  (10) background colors are well separable, which demonstrages t

J . effectiveness of the newly incorporated edge weights.
+ Z f(dist(5))]|v}; — vil%, s.t.,v? =h; We have also tested the proposed algorithm on the MSRC
J€Cstay ground truth data set [26], which consists of 50 test images.

wherew (empirically set to 1 in our experiments) is a tradeoff© the best of our knowledge, this is currently the only
parameter for soft boundary constraint points, andnd v’ publicly available image segmentation data set that pesvid

denote two column vectors whose elementsand v/, are trimaps and ground truth. Table | summarizes the achieved
] .
the vertices on the initial contodt and the deformed contour €OF rates by the proposed algorithm and other stateesf-th

C’, respectively. As the complexity of contour deformation igrt algorithms. The error rate is defined as
very low, we use all the pixels on the contour for deformation _ no. misclassified pixels
It is also possible to set a minimum distance between the “~ ho. pixels in unclassified region

neighboring sampling points on the contour. o . o em
. e 5 _ where “misclassified pixels” excludes those from the un-
The f|rst term| Lv L‘.’” in Eq. (10) is adapted from the classified region of the expert trimap [11], [26]. Our pro-
Lqplauan mesh processing [2.5] to preserve the global Shapooesed algorithm achieves an error rate of 4.08% with a
with the transform matrix, defined as variance of 3.72%. For fair comparison, all the algorithms
L=1-D"1A, (11) use exactly the same trimaps provided with the MSRC data
) o _ ) ~ set as the user inputs. The error rates for other state-of-
whereD is a matrix withD;; = 2 and A is the adjacent matrix the-art algorithms are either directly quoted from the best

defined as results reported in literature or obtained through our im-

(13)

(1) |f)t_hejzr|v;sle (12) plementation. The LazySnapping code is obtained online
from ETH Zurich (http://www.cg.inf.ethz.ch/teachingffoer/
For the stay-put constraints in Eq. (10), we use the distanoeagesynthesi®6/miniprojects/p2/index.html).
function f(dist(i)) as the weight. Particularlylist(i) is the Note that a simple adaptive threshold method was reported
normalized geometric distance from pixe{i) to the input in[27] that can be combined with the existing algorithmshsuc
strokes and the functiorf can be any monotonic increasingas the random walks to further reduce the error rate. However
function such that pixels near the input strokes have smtie adaptive threshold method is very specific to the MSRC
weights and those far away from the input strokes have lardata set or a boundary brush tool where the unseeded region
weights. It follows that the contour pixels far away from thenly covers a small band along the object boundary. It is not
inputted stroke that are considered to be of high confidereee @ general method that can be applied to any segmentation.
unlikely to be moved. In this research, we uger) = z. In  Specifically, the adaptive threshold method does not work we
addition, the pixels; with f(dist(i)) larger than a predefined
threshold are excluded from the contour deformation step. 1Av_ai|ab|e at http://www.eecs.berkeley.edu/Researdj@ets/CS/vision/
S . rouping/segbench/
The minimization problem (10) can be converted into the

g ‘ s b 2Available at http://research.microsoft.com/en-us/um/cgerprojects/
form of a sparse linear system by differentiating the olbject visionimagevideoediting/segmentation/grabcut.htm
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(a) input image (b) RW probability map (c) RW foreground (d) our probability map (e) our foreground

Fig. 1. Comparison between the random walks algorithm andykbieal step of the proposed framework to demonstrate thetiw#eess of the proposed
edge weights. From left to right: (a) input images with stokeed for foreground and blue for background); (b) the pbilig maps by random walks; (c)
the segmentation results by random walks; (d) the probgimilaps by the proposed method (showing more confident sepgraggrihe segmentation results
by the proposed method. The KL-divergence values of the ttesteimages are 0.78, 0.84 and 0.53, respectively. The paamen Eq. (5) is fixed to 3
and 500 for our method and the random walks algorithm, resgdgtiBest viewed electronically (with zoom-in).

. . TABLE |
for |mages_W|th large unkn_own area. T_herefore, we do NOERrroR RATE COMPARISON USING THEMSRC DATASET WITH EXACTLY
compare with the results with the adaptive threshold method THE PROVIDED TRIMAPS
reported in [27].

For most of the images in the MSRC data set, the proposed Method Error rate
; ; GMMRF [26] 7.9% (reported in [26])
me_thod achieves very low error rates. High error rates occur GrabCut [10] 5.66% (our implementation
in images where the input foreground seeds only cover a small SIOX [11] 9.1% (reported in [11])
portion of the foreground and thus do not cover all the distin Random walks [2]|  5.4% (reported in [27])
colors of the foreground, while pixels with similar colorea LazySnapping (9] 6.65%
Proposed 4.08%

masked by the background seeds. For such cases, the GrabCut
algorithm and the random walks algorithm also perform poorl

(and usually worse). . .
. . " B. With Additional Soft and Hard Constraints
Moreover, by simply drawing one or two additional fore-

ground and/or background strokes, or by the aid of soft and/o Fig. 2 shows an example of utilizing additional constraint
hard constraints, the error rates of such failure cases eanif the constrained random walks framework. As illustrated i
significantly further reduced using our unified approache Orhe figure, by only inputting the foreground and background
example is that by adding several foreground and backgroustdokes, the weak boundary between the object and the back-
strokes to the seven images (with an error rate higher than g@#6und cannot be detected precisely. However, with only one
by our method initially) in the MSRC data set, we reduce thedditional soft boundary stroke (which is only partiallyagn
initial errors dramatically and the overall average eraierof on the boundary), a much better result is obtained.
the 50 images is dropped from 4.08% to 2.84%. We now evaluate the proposed local editing algorithm. Fig. 3
We would like to point out that, although both our methoghows the effect of the local editing with a soft boundary
and LazySnapping use multiple types of user inputs, ogenstraint. The computed probability map in Fig. 3(c) tells
method is quite different from LazySnapping. In particulathat the pixels near the soft boundary (the tail of the cateha
in terms of user interface, LazySnapping uses different girobability values very close to 1/2. Thus, the thresha@din
gorithms to handle different inputs. To the user, the regigperation does not lead to a clean boundary within the soft
segmentation and boundary editing are two separate steps.s@oke, as shown in Fig. 3(f). On the other hand, the local
the contrary, our work supports multiple intuitive inputsda editing algorithm, i.e., first finding the shortest path witthe
any of their combinations under one computational fram&worsoft stroke that captures a good boundary and then deforming
In terms of speed, our approach is faster as LazySnappihg initial contour to the shortest path, results in a betlgect
refines the entire contour in the boundary editing step usiggtraction, as shown in Fig. 3(g).
energy minimization by graph cut, while in our framework Fig. 4 shows the effect of the local editing with hard
boundary editing is a local deformation process. boundary constraints. In particular, after the global st



(a) input image (b) foreground 1 (c) + soft stroke (d) foreground 2

Fig. 2. Comparing the results with and without soft constréan the constrained random walks algorithm. From left tchtiga) input image with strokes
(red for foreground and blue for background); (b) corresfom result; (c) with an additional soft boundary stroke @ireen); (d) corresponding new result.

(a) original (b) with strokes (c) probability map

(d) w/o local editing (e) with local editing (f) close-up of (d) (g) close-up of (e)

Fig. 3. Comparing the results with and without local editif@) original image; (b) original image with strokes (red, blued green for foreground,
background and soft boundary strokes, respectively); He)grobability maps by the global step of the proposed framew@l) the segmentation result
without local editing; (e) the segmentation result with loediting; (f) close-up of (d); (g) close-up of (e).

the foreground and background strokes, the object is faigly framework that facilitates different types of user inputs, are
segmented except some small inaccuracies as shown in dbée to refine the initial results more efficiently and effesdy
close-up in Fig. 4(c). This problem can be easily fixed by gisir(in two steps interaction as opposed to three).

hard boundary constraints. Specifically, by marking fivedhar Compared with the popular GrabCut algorithm that requires
boundary pixels, the proposed local editing algorithm snafierative optimization, the proposed framework only regsi

the initial contour to the specified boundary pixels througio solve sparse linear equations and is thus much faster in
local contour deformation, which results in a smoother argpeed. The constrained random walks module typically takes
more accurate object contour. less than three seconds to process an image with a resolution
of 640 x 480, and the local editing module can generate the
result virtually instantly. For the MSRC data set with the
provided trimaps, the average processing time of our pegbos

Fig. 5 shows the comparison of the segmentation resuffamework is 1.48 seconds while that of Grabcut is 4.64
among the GrabCut algorithm, the random walks algorithrgeconds.

and the proposed framework. For the case using the GrabCut

algorithm, a rectangle covering the object is not sufficient o

obtain a good result. Thus, foreground and backgroundesrol®- Limitations

need to be continuously added until a reasonable result isThe proposed constrained random walks algorithm follows

achieved. For the case using the random walks algoriththe random walks framework. As mentioned, without the soft

adding more strokes may cause unexpected fluctuatiorthiee.,and hard boundary constraints, the only difference between
previously correctly labeled regions change their labdigenv our method and the random walks lies in the edge weighting.
more strokes are added. On the contrary, by using the prdpo3&erefore, the performance of the proposed method is close

C. More Comparisons



(a) input image (b) foreground 1 (c) close-up of (b) + (d) foreground 2
hard constraints

Fig. 4. An example of the local editing with hard boundary d¢miats. (a) the input image with strokes (red for foregrowmt blue for background);
(b) the segmentation result by the global step of the propérsedework; (c) close-up of (b) with additional five hard boang pixels in magenta; (d) the
segmentation result after local editing.

(a) our inputl (b) our outputl (c) our input2 (d) our output2

Fig. 5. Comparing the segmentation results of the GrabCutrittign, the random walks algorithm, and the proposed framewr&m top to bottom:
the results of GrabCut, the results of random walks (RW), &edrésults of the proposed framework. The red, blue, and gsekes denote foreground,
background, and soft boundary strokes, respectively. #ested electronically (with zoom-in).

to random walks except for images whose foreground aad semi-lucent hair, for which we have to rely on matting
background colors are well separable, where the propogedhniques.
method outperforms the random walks. With the soft and hard

boundary tools as a whole, the proposed framework provides V. CONCLUSIONS
an easier tool for users to segment difficult images, such as, tnis paper, we have proposed an interactive image
noisy images and images with complex shapes. segmentation framework that consists of two components:

In general, the proposed framework performs well on mogbnstrained random walks and local contour deformatior. Th
images with straightforward user inputs. It can do well foproposed framework supports multiple intuitive types orus
camouflaged images and images with thin structures if the usgputs and therefore combines the advantages of differsart u
inputs are carefully placed. One example is shown in Fig. @teractions. The foreground and background brushes are th
where foreground and background strokes are carefullepladnost commonly used interaction tools as they are easy to use
at each side of the object boundary in order to well segmedyid instructive to the algorithms. The soft boundary brush
the object. and the hard boundary pixel selector are extremely useful

With a certain amount of user interaction, failure casde handle weak boundaries, where adding more foreground
can occur for hairy objects or thin structures whose colar background strokes may cause unexpected fluctuation in
overlapped with the background color. In this case, the prthhe segmentation results. These tools enable the proposed
posed edge weighting degenerates to that of the rand@mamework to work fast and accurately with ease. The superio
walks algorithm, while intensive additional user efforte a performance of the algorithm has been demonstrated by a
required to delineate the fine boundary using the proposedmber of experiments on the benchmark data sets.
boundary tools. We would like to point out that since the The contributions of this paper can be summarized as fol-
proposed framework is a hard segmentation method, it cantmt/s. First, the proposed constrained random walks alyorit
well handle transparent or semi-transparent boundariel stogether with the proposed local editing algorithm support



the three types of user inputs and their combinations in ] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Activentour

coherent and unified framework. Second, the region prion ter 5
is included in the edge weights so that the proposed corln-]
strained random walks algorithm does not lose the conngctiv

models,”IJCV, pp. 321-331, 1988.

E. N. Mortensen and W. A. Barrett, “Interactive segmetatwith
intelligent scissors,"Graphical Models in Image Processingol. 60,
no. 5, pp. 349-384, 1998.

property and is less demanding on the positions and questiti [7] A. Falcao, J. Udupa, and F. Miyazawa, “An ultra-fast user-steereahe

of the user input strokes than the original random walks
algorithm [2]. Third, the proposed local editing algorithmis]
also allows additional local refinement to reach a satisfgct

segmentation.

The proposed framework can be extended in several ways.

First, its runtime can be further improved. In particulamitar

to the random walks algorithm, the complexity of the propbse
method lies in solving a sparse linear system, whose dirmensj11]
depends on the number of unknown pixels in the image and
the adjacency structure (e.g., 4-connected or 8-connectgeh
There are many efficient algorithms for solving sparse lin-
ear equations and we adopt the sparse direct linear solver
implemented in TAUCS (http://www.tau.ac:#toledo/taucs/). 13
Without code optimization, the response time of the progose

framework is typically around 5 seconds for6d0 x 480

image on a PC with Intel 2.67GHz CPU and 2GB RAM. Thgs,
response time can be greatly improved through the graphics
processing unit (GPU) implementation [28]. The local eujti [16]
step also requires solving of a sparse linear system, whose
dimension depends on the sampling of the object contour. Ag]
the number of pixels on the object contour is much smaller

than image size, even without sampling, the local editieg stg,

gives immediate response.

Second, it is interesting to extend the proposed meth
to soft segmentation and video segmentation. In fact, t
random walks algorithm has been successfully extended for

soft segmentation [28]. Similarly, we could integrate efifee

boundary matting tools into the proposed method for soft
segmentation. Extending our method to video segmentati@m]
is not straightforward. This is because video data consi
of thousands of video frames. It is impossible for a user
provide inputs for each video frame. Thus, it becomes aitic

to design an intuitive and user-friendly interface to effidly
acquire user feedback.

Last but not least, it is meaningful to conduct a usd?4]
study to compare our method with different interactive imaqzs]
segmentation algorithms in terms of usability. The usedystu
should involve many professional and unprofessional uers[26]
segment a large number of test images. With the intensive
user study, it is possible to create a metric to measure hg
amount and the complexity of interaction that is required
for an interactive image segmentation algorithm to achiel@!

satisfactory results.
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