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ABSTRACT

Though quite a few image segmentation benchmark datasets
have been constructed, there is no suitable benchmark for
semantic image segmentation. In this paper, we construct a
benchmark for such a purpose, where the ground-truths are
generated by leveraging the existing fine granular ground-
truths in Berkeley Segmentation Dataset (BSD) as well as
using an interactive segmentation tool for new images. We
also propose a percept-tree-based region merging strategy
for dynamically adapting the ground-truth for evaluating
test segmentation. Moreover, we propose a new evaluation
metric that is easy to understand and compute, and does not
require boundary matching. Experimental results show that,
compared with BSD, the generated ground-truth dataset is
more suitable for evaluating semantic image segmentation,
and the conducted user study demonstrates that the proposed
evaluation metric matches user ranking very well.

Index Terms— Benchmark, Evaluation, Semantic Image
Segmentation, Dataset

1. INTRODUCTION

Semantic image segmentation refers to the task of segmenting
an image into a set of non-overlapped meaningful regions
corresponding to objects or parts of the objects which can
deliver semantics or high-level structure information. A
good semantic image segmentation can benefit many other
computer vision tasks and multimedia applications such as
object recognition, content-based image indexing, summary
and retrieval, and image editing.

Although there is no universal answer on what a good
semantic image segmentation should be since the concept
of “semantic” is subjective and content-dependent, there are
some general criteria. First, a good semantic segmentation
should be able to achieve high similarity within segments
and low association across the segments. Second, the seg-
mentation boundary should match human perception. Third,
semantic segmentation should reflect significant features and
small-scale fluctuation should be ignored according to the
part salience theory [1]. In other words, semantic image
segmentation should decompose an image into a small set
of meaningful regions (different from over-segmentation or
clustering pixels), each of which is of considerable size. Fig. 1
shows a few examples of semantic image segmentation.

Fig. 1. Examples of semantic image segmentation. Each
nature image is followed by a few semantic segmentations
at different levels. In general, each image is segmented into a
small set of meaningful segments with considerable sizes.

With more and more semantic image segmentation al-
gorithms being developed in the past few years, there is a
need to construct a benchmark to evaluate the performance
of different algorithms. Although there are already several
image segmentation benchmark datasets available, they are
not suitable for evaluating semantic image segmentation. This
is because the existing datasets are either of fine granularity
such as the Berkeley Segmentation Dataset (BSD) [2] (often
having 10 - 30 segments) widely used for boundary detection,
or having 1-2 objects such as in [3, 4] for object cutout, or
for some particular object classes such as in [5, 6], which
cannot be directly used for evaluating the considered general
semantic image segmentation that typically has less than 10
meaningful segments.

On the other hand, a good benchmark should not only
have a representative dataset but also have an effective and
efficient evaluation metric. In general, the existing evaluation
metrics can be classified into three categories: region-based,
boundary-based and hybrid-based. The popular region-based
metric in [2] is tolerant to refinement, but is insensitive
to boundary complexity and requires similar number of
segments in both test segmentation and ground-truth. The
widely used boundary-based metric in [7] is sensitive to
boundary complexity, but requires a complex math model to
match the boundaries in test segmentation and ground-truth.



Hybrid-based metric [8] combines the region and boundary
measurements through a weighted summation, which also
introduces the additional issue of how to set the combination
weight.

In this paper, we develop a benchmark for semantic image
segmentation. Particularly, we construct a new dateset that
is suitable for testing and evaluating semantic segmentation.
Unlike BSD, which costs 30 people 8 months to generate the
ground-truths by manual labelling, we construct our ground-
truth dataset by making use of the existing fine granular
ground-truths in BSD as well as generating ground-truth for
new images via an interactive segmentation tool that supports
unlimited refinements. We also propose a percept-tree-based
region merging strategy that allows to dynamically adapt
the stored ground-truth so as to provide the most suitable
ground-truth for the input test segmentation. Moreover, we
propose a new evaluation metric that is easy to understand and
compute, and does not require boundary matching. Experi-
mental results show that, compared with BSD, the generated
ground-truth dataset is more suitable for evaluating semantic
image segmentation, and the user study demonstrates that the
proposed evaluation metric matches user ranking very well.

2. RELATED WORK

2.1. Review of image segmentation datasets

Several image segmentation datasets have been constructed
for testing and evaluating different algorithms [9, 5, 3, 6, 4,
2]. In particular, the dataset of image segmentation with a
bounding box prior contains 50 images with only one salient
object in each image and it targets for foreground extraction.
PASCAL VOC 2009 dataset [5] is for recognizing objects
from a number of visual object classes in realistic scenes.
It has 20 object classes and totally 14743 images. With
object segmentation ground-truths included, PASCAL VOC
2009 dataset can also be used to test and evaluate object-
level segmentations. CMU-Cornell iCoseg dataset [3] is a
recent co-segmentation dataset with 38 groups and totally
643 images. Each group contains a common foreground
and each image has a ground-truth that separates foreground
and background. Weizmann horses dataset [6] contains 328
images of horses. To avoid potential ambiguities when eval-
uating different segmentation algorithms, the segmentation
evaluation dataset [4] selects 200 gray level image with only
1 or 2 objects in each of the images. BSD [2] is a widely used
image segmentation benchmark which includes 500 images
with 5 to 10 manually labelled ground-truths for each image.
BSD is targeted for boundary detection and general image
segmentation.

2.2. Review of evaluation metrics

Here we briefly review the two widely used segmentation
evaluation metrics. The first one is a region-based metric

called consistency error proposed in [2] which evaluates the
consistency of segment interiors. One property of this metric
is that it is tolerant to refinement. For example, suppose we
have two segmentations S1 and S2 for an image. Let R(S, p)
denote the region in segmentation S that contains pixel p. If
R(S1, pi) is a proper subset of R(S2, pi), then pi lies in a
region of refinement and there is no local error; otherwise,
the local error is non-zero. Two different ways named Global
Consistency Error (GCE) and Local Consistency Error (LCE)
are introduced to combine individual local errors into an
overall error measurement for the entire image. Both GCE
and LCE are symmetric and tolerant to refinement. The
problem with this metric is that it is meaningless when the
number of segments in the test segmentation is quite different
from that of the ground-truth. For example, the segmentation
with each pixel being a segment is a refinement of any
segmentation, which results in an overall zero error.

The second metric is a boundary based metric called
boundary matching proposed in [7]. Boundary matching eval-
uates a segmentation algorithm by matching the boundaries
of the test segmentation to the boundaries of ground-truths,
and then sums the matching quality. It first converts the
boundary matching problem into a minimum cost bipartite
assignment problem. After solving the problem, by using a
particular threshold as localization error, boundary pixels are
classified into hits, misses, and false positives. With these
numbers, precision and recall for a single segmentation can
be computed as a summary of the matching quality. The
advantages of this metric is that it is sensitive to boundary
complexity and does not need to match interior pixels.

3. GROUND-TRUTH GENERATION

Before constructing the benchmark dataset, we need to ad-
dress two issues: what type of ground-truths is needed and
how to generate the ground-truths. For the first issue, as
aforementioned, the semantic image segmentation is expected
to segment an image into a small number of meaningful re-
gions with considerable size. With such a definition, different
people are still likely to draw different semantic segmentation
results for the same image since the semantic interpretations
are different (see Fig. 1 for example). One way to deal with
this is to store multiple ground-truths for one image, just
like that in the Berkeley segmentation dataset, which however
misses the connections among different ground-truths and is
also storage-inefficient.

In this research, we use percept tree to represent the object
hierarchy in an image. In a percept tree, each node represents
an object and a child node is a sub-segment of its parent
node. Nodes at the same level of the percept tree should
have equal importance. Fig. 2 gives an example of the percept
tree, where the image is first segmented into the foreground
and the background in level 1, the foreground is then further
segmented into left man and right man in level 2, and at the



Fig. 2. An example of percept tree.

last level, each person is further segmented into three objects:
helmet, head and body. The number of levels is small since
our semantic image segmentation requires small number of
segments with considerable sizes. Based on the percept
tree, we propose to use the segmentation corresponding to
the leaf-level of the percept tree as the ground-truth for our
semantic image segmentation benchmark. Moreover, we
embed the percept tree into the group-truth map by using
different color codes for different nodes at the same level
and using parent’s color codes as a suffix for its children’s
color codes. In this way, one ground-truth map can generate
multiple ground-truths corresponding to different levels of the
percept tree through region merging, which will be discussed
in Section 4.1.

For the second issue on how to generate ground-truths,
a common approach is through manual labelling to reach
pixel-level segmentation accuracy, which is very tedious
and time-consuming. Here, we consider two methods to
generate the ground-truths. One method is to leverage the
existing interactive segmentation tools such as [10], which
can achieve high segmentation accuracy with a small amount
of user effort. The other method is to adapt the ground-truths
available in the existing segmentation datasets such as BSD
that have been produced by laborious manual labelling. These
two methods are complement to each other, where the former
is to generate ground-truths for new images and the latter is
for the images in the existing datasets. The combination of
these two methods makes the construction of our semantic
image segmentation benchmark faster and easily extendable.

In particular, we make use of the fine granularity ground-
truths available in BSD. A C++ software is developed to
merge the BSD ground-truths into those suitable for evaluat-
ing semantic segmentations as well as embedding the percept
tree information into each ground-truth. Fig. 3(a) shows
a snapshot of the software, where the upper left window,
upper right window and the lower window are the original
ground-truth from BSD with 16 segments, adapted ground-
truth for our benchmark with 7 segments and the percept tree,
respectively. Fig. 4 illustrates a few generated ground-truths
by adapting those in BSD.

(a) Ground-truth generator (b) Region merging

Fig. 3. (a) Software snapshot for generating the semantic
ground truths from BSD. (b) Dynamic region merging for
segmentation evaluation.

(a) Images (b) BSD (c) BSD (d) Ours

Fig. 4. Generating the semantic ground-truths from the
BSD ground-truths. (a) original images; (b) corresponding
BSD ground-truth with the least number of segments; (c)
corresponding BSD ground-truth with the most number of
segments; (d) adapted ground-truths for evaluating semantic
image segmentation.

4. PROPOSED EVALUATION METHODOLOGY

Based on the generated ground-truths, in this section we
describe our proposed evaluation methodology, which takes
two segmentations, i.e. test segmentation and ground-truth,
as the input and produces a score indicating how good the test
segmentation result is. Our evaluation methodology consists
of two steps: region merging and metric computation.

4.1. Region merging strategy

The first step in our proposed evaluation is to dynamical-
ly merge regions in the ground-truth so as to provide the
most suitable ground-truth for the input test segmentation.
Recall that for each image we only store one ground-truth
map/image at the leaf-level of the percept tree. However,
the input test segmentation results by different semantic
segmentation algorithms could be quite diverse in terms of
the number of segments. It is hard to have a fair evaluation
if the numbers of segments in the test segmentation and the
ground-truth are quite different. Thus, we propose to merge



regions according to the percept tree so as to generate the most
suitable ground truth that has the closest number of segments
compared to the test segmentation.

This region merging step follows the rule that nodes at
the same level of the percept tree are either all merged or
merged none since all the segments at the same level have
approximately equal importance. Fig. 3(b) is a snapshot
taken during the evaluating process which shows the merged
ground-truth (bottom-left) automatically generated from the
ground-truth (up-right) for evaluating test segmentation (up-
left).

4.2. Evaluation Metric

Our proposed evaluation metric belongs to the type of
boundary-based metrics, which compare boundaries between
the test segmentation and the ground-truth. Unlike the state-
of-the-art boundary metric proposed in [7], which seeks the
optimal boundary matching, here we propose an intuitive
and simple boundary metric that is easy to understand and
compute.

Our basic idea is to check each boundary pair in a
segmentation against that in the other segmentation, reward
the matching cases and punish the mismatching cases. Math-
ematically, we define the evaluation function as

E =
∑
i

∑
j∈Nk(i)

Wij(pi ⊗ pj) (1)

with:

pi ⊗ pj =

{
1, R(S1, pi) 6= R(S1, pj)

0, otherwise

Wij =

{
W+
ij , R(S2, pi) 6= R(S2, pj)

W−ij , otherwise.

pi ⊗ pj can be considered as an XOR operation which
returns 1 when pixel i and its k-ring neighbor pixel j do
not belong to the same segment in the segmentation S1, i.e.
R(S1, pi) 6= R(S1, pj), and returns 0 otherwise. Eq. (1)
enforces that a reward weight W+

ij (e.g. 1) is given to a
boundary pair, i.e. pi ⊗ pj = 1, if the corresponding pair in
the other segmentation S2 also belongs to different segments,
i.e. R(S2, pi) 6= R(S2, pj); otherwise, a punish weight W−ij
(e.g. -1) is given. A higher E value means a better matching
between the two segmentations.

With S1 being the test segmentation and S2 being the
ground-truth, (1) becomes computing precision P , which
measures how accurate the boundaries of the test segmenta-
tion are. On the other hand, with S1 being the ground-truth
and S2 being the test segmentation, (1) becomes computing
recall R, which measures how many ground-truth boundaries
are correctly labelled. Following [7], we use Fα-measure to
combine the precision and the recall into one score:

Fα =
P̂ · R̂

(1− α)R̂+ αP̂
(2)

(a) Test segmentation (b) Ground-truth segmentation

Fig. 5. Segmentation evaluation for a pixel, where the black
rectangle represents the checking window (1-ring neighbor-
hood here), solid lines indicate reward and dashed lines
indicate punish.

where P̂ and R̂ are normalized P and R values, and α is the
tradeoff factor. Since P and R are defined in the same way
and of the same importance, we set α = 0.5 and use it for all
the experiments.

Fig. 5 illustrates the segmentation evaluation of individual
pixels. Particularly, at each location, we evaluate those pixels
within a checking window that belong to a segment different
from that of the center pixel. Since the computation is only
needed for boundary pairs, the computation cost is low.

4.3. Weight Function

In this subsection, we discuss how to design the weight
function Wij . One intuitive way is to set the reward/punish
weights to be crisp values (e.g. 1 and -1). However, such a
setting does not distinguish different test segmentations with
different distances away from the ground-truth boundaries.
For example, for two test segmentations where one is close
to the ground-truth boundary and the other is far away, the
intuitive setting might lead to similar evaluation scores, which
is not reasonable. In addition, considering that the boundaries
in digital images are imperfect due to digitization and a
boundary with 1 or 2 pixels away from the ground-truth
might not be perceived as a difference, emphasizing perfect
boundary alignment by crisp values is not necessary.

Inspired by the Fuzzy-evaluation function proposed in [8],
we define our reward and punish functions as:

W+
ij =


1, 0 ≤ d(i, j) < a

1− 0.5(d−ab−a )
2, a ≤ d(i, j) < b

0.5( c−dc−b )
2, b ≤ d(i, j) < c

0, c ≤ d(i, j)

(3)

W−ij =



0, 0 ≤ d(i, j) < a

−0.5(d−ab−a )
2, a ≤ d(i, j) < b

0.5( c−dc−b )
2 − 1, b ≤ d(i, j) < c

−1, c ≤ d(i, j) < c+ a

0, c+ a ≤ d(i, j)

(4)

where a, b, c are parameters for localization error, controlling
the function slope, and dense evaluation complexity, respec-



(a) Image (b) Ground-truth (c) BSD (d) Test

(e) Test (f) Test (g) Test (h) Test

Fig. 6. Examples of a few test segmentations. (c)-(h):
different test segmentations.

Table 1. Evaluations of the test segmentations in Fig. 6.

Tests Precision Recall F-measure
(c) 0.43 0.77 0.55
(d) 0.80 0.78 0.79
(e) 0.59 0.54 0.57
(f) 0.79 0.78 0.79
(g) 0.50 0.48 0.49
(h) 0.38 0.35 0.36

tively, and d(i, j) is the Euclidean distance between pi and
pj .

5. EXPERIMENTAL RESULTS

In this section, we evaluate the quality of the generated
benchmark ground-truths and the effectiveness of the pro-
posed quantitative metric. We choose 100 images from the
BSD, which contain unambiguous objects in human vision
perception. The original ground-truths in BSD are adapted
according to the percept tree to generate the wanted ground-
truths for evaluating semantic image segmentation, as de-
scribed in Section 3. For the proposed evaluation metric,
unless it is specified, the default values for parameters a, b,
c are set to a = 2, b = (c+ a)/2 and c = 10.

5.1. An example

Fig. 6 gives an example of a natural image with our ground-
truth, one original BSD ground-truth, and several test seg-
mentations, which are generated by based on the interactive
segmentation method in [10] with different user strokes.
Table 1 lists the corresponding quantitative evaluation results
of precision P , recallR and F-measure Fα with respect to our
generated ground-truth. In particular, Fig. 6(c) is a case that
one original BSD ground-truth is taken as a test segmentation,
which is considered as an over-segmentation. Thus, (c) has a
higher recall value than its precision. Fig. 6(d) and (e) are the
test results with seven segments, where (d) has better visual
quality than (e). Correspondingly, the scores of (d) in Table 1

(a) with c = 10 (b) with a = 2

Fig. 7. Evaluation results under different parameter values for
the test segmentations in Fig. 6.

are higher than those of (e). Fig. 6(f) and (g) are the test
segmentations with three segments, and (h) is the one with
two segments. All these results indicate that our quantitative
evaluation metric matches the relative visual quality well.
In addition, comparing (d) and (f), our metric gives similar
scores although their numbers of segments are quite different.
This is because of the region merging operation described in
Section 4.1. Giving similar scores to (d) and (f) also matches
the human perception since both segmentations are good in
their respective semantic levels.

We also use Fig. 6 as an example to study the impact of
the parameter variation on the evaluation results. Fig.7 shows
the precision vs. a and precision vs. c curves. It can be
seen that the precision scores increase with the increase of
parameter a. This is understandable since relatively larger a
means more local errors can be tolerated. From this point of
view, our benchmark is able to control the degree of concerns
on the segmentation accuracy. Similarly, the precision scores
increase as parameter c increases since relatively larger c
corresponds to slower reward decreasing and slower punish
increasing in the weight functions. Note that larger c also
results in higher computational complexity since the checking
window becomes larger. Thus, c can be used to control the
complexity and the differentiation ability of our proposed
evaluation metric.

5.2. Ground-truth comparison

Here, we compare our generated benchmark with the Berke-
ley Benchmark for semantic image segmentation. Specif-
ically, for each of the 100 test images, we generate one
good-quality semantic image segmentation result based on
the interactive segmentation tool in [10] with some local
refinements. Then, we quantitatively evaluate these 100 test
segmentations with reference to our generated ground-truths
as well as the original BSD ground-truths. Fig. 8 shows the
results of recall versus precision under different benchmarks.
It can be seen that Berkeley benchmark gives high precision
for most of the test segmentations but with generally low
recall values. This is because many BSD ground-truths are
of fine granularity and are generated for boundary detection
purpose. On the contrary, our benchmark provides fairly



(a) Using our ground-truth (b) Using BSD ground-truth

Fig. 8. Evaluation results by using different benchmarks.

Fig. 9. Comparisons of the average ranking scores between
the user study and our benchmark evaluation.

balanced precision and recall values, concentrated at the high
end. This comparison demonstrates that our benchmark is
more suitable for evaluating semantic segmentations.

5.3. User study

In order to show our quantitative evaluation results match
human vision perception, a user study is conducted among
14 subjects. Among these subjects, 7 of them have no/little
experience on image processing, 4 of them have experience
on image processing but not on image segmentation, and 3 of
them have research experience on image segmentation.

Multi-label segmentation tools based on Geodesic [11],
Convex Active Contour (CAC) [10] are used to generate
3 groups of test segmentations: Geodesic, CAC with nor-
mal mode(CAC-N), CAC with smooth mode(CAC-S). The
difference between the normal mode and the smooth mode
is the setting of the smooth parameter which controls the
smoothness of the image segmentation.

A user study software is implemented which randomly
picks 1 image along with its 3 test segmentations. Subjects
are asked to give scores (1 to 3, the higher the better) to each
test segmentation. The scores are saved into a log file for
analyzing. Scores are averaged among 14 log files for each
algorithm over all the images. The average ranking scores
of our benchmark are also generated based on our objective
evaluation metric. Fig. 9 shows the average ranking scores
of the three groups of the test segmentations under both user
study and our benchmark evaluation. It demonstrates that
our benchmark evaluation matches the subjective user ranking
very well.

6. CONCLUSION

The contributions of this paper are twofold. First, we have
built a benchmark dataset for semantic image segmentation.
This is done by utilizing existing ground-truths and an inter-
active segmentation tool, which makes the construction faster
and easily extendable. Our generated ground-truth is also
embedded with the concept of percept tree, which makes the
ground-truths adaptable via simple region merging. Second,
we have proposed a new metric that is simple and intuitive to
evaluate semantic image segmentation, and matches human
perception well. We will release our benchmark to the public
and we believe such a benchmark will greatly benefit the
community to develop better semantic image segmentation.
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